[1] 许宏图, 刘树龙, 石大庆, 等. 煤矸石-脱硫石膏-粉煤灰膏体料浆制备及性能研究[J]. 矿业研究与开发, 2024, 44(6): 156-164. XU H T, LIU S L, SHI D Q, et al. Preparation of coal gangue-desulfurization gypsum-fly ash paste slurry and its properties[J]. Mining Research and Development, 2024, 44(6): 156-164 (in Chinese). [2] 李雅迪. 我国煤矸石综合利用现状与展望[J]. 煤炭经济研究, 2024, 44(4): 127-133. LI Y D. Current situation and prospects of coal gangue’s comprehensive utilization[J]. Coal Economic Research, 2024, 44(4): 127-133 (in Chinese). [3] 程 普, 李 荣, 王 雅, 等. 煤矸石热活化方法探索[J]. 砖瓦, 2024(5): 24-26. CHENG P, LI R, WANG Y, et al. Study on thermal activation of coal gangue[J]. Brick-Tile, 2024(5): 24-26 (in Chinese). [4] 贾冠华, 贾 佳, 刘 玮, 等. MICP增强改性煤矸石在水稳材料中应用的试验研究[J]. 公路交通科技, 2024, 41(3): 50-60. JIA G H, JIA J, LIU W, et al. Experimental study on application of MICP modified coal gangue in cement stabilized material[J]. Journal of Highway and Transportation Research and Development, 2024, 41(3): 50-60 (in Chinese). [5] LUO S Q, GAO S, YANG L, et al. Enhancing coal gangue aggregates with fly ash-cement slurry: synergistic effects of CO2 mineralization on physical and mechanical properties[J]. Construction and Building Materials, 2024, 440: 137389. [6] 刘小婷, 温久然, 王思雨, 等. 原状煤矸石骨料强化工艺研究[J]. 无机盐工业, 2020, 52(4): 65-71+78. LIU X T, WEN J R, WANG S Y, et al. Study on strengthening technology of raw coal gangue aggregate[J]. Inorganic Chemicals Industry, 2020, 52(4): 65-71+78 (in Chinese). [7] 姚志鑫, 穆川川, 单俊鸿, 等. 基于裹浆工艺的煤矸石混凝土性能研究[J]. 硅酸盐通报, 2023, 42(2): 587-597. YAO Z X, MU C C, SHAN J H, et al. Performance of coal gangue concrete based on slurry wrapping technology[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 587-597 (in Chinese). [8] 高文志. 煤矸石表面处理后做混凝土骨料的研究[D]. 淮南: 安徽理工大学, 2015. GAO W Z. Study on making concrete aggregate after surface treatment of coal gangue[D]. Huainan: Anhui University of Science & Technology, 2015 (in Chinese). [9] ZHANG S H, CAO M Y, ZHANG K F, et al. Wrapped coal gangue aggregate enhancement ITZ and mechanical property of concrete suitable for large-scale industrial use[J]. Journal of Building Engineering, 2023, 72: 106649. [10] 吴 琼, 胡忠君, 王健仵, 等. 再生粗骨料碳化处理及其对再生混凝土性能的影响研究进展[J]. 建筑结构, 2023, 53(增刊2): 1347-1351. WU Q, HU Z J, WANG J W, et al. Research progress of carbonization treatment of recycled coarse aggregate and its effect on properties of recycled concrete[J]. Building Structure, 2023, 53(supplement 2): 1347-1351 (in Chinese). [11] 肖建庄, 邓 琪, 段珍华, 等. 再生细骨料碳化改性及其对砂浆流变性的影响[J]. 应用基础与工程科学学报, 2024, 32(5): 1486-1495. XIAO J Z, DENG Q, DUAN Z H, et al. Carbonation modification of recycled fine aggregate and its effect on rheological properties of mortar[J]. Journal of Basic Science and Engineering, 2024, 32(5): 1486-1495 (in Chinese). [12] 杨 晶, 牛玺荣, 杨 煜, 等. 粉煤灰基地聚物稳定土抗压强度影响因素研究[J]. 公路, 2024, 69(8): 366-373. YANG J, NIU X R, YANG Y, et al. Study on influencing factors of compressive strength of fly ash-based polymer stabilized soil[J]. Highway, 2024, 69(8): 366-373 (in Chinese). [13] ZHAN B J, POON C S, LIU Q, et al. Experimental study on CO2 curing for enhancement of recycled aggregate properties[J]. Construction and Building Materials, 2014, 67: 3-7. [14] 陈星耀. 水泥砂浆饱和碳化过程及收缩机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. CHEN X Y. Study on saturated carbonation process and shrinkage mechanism of cement mortar[D]. Harbin: Harbin Institute of Technology, 2021 (in Chinese). [15] 赖创林, 刘乐平, 刘剑辉, 等. 碳化养护水泥基材料的抗碳酸水溶液腐蚀性能[J]. 硅酸盐学报, 2023, 51(11): 2890-2904. LAI C L, LIU L P, LIU J H, et al. Corrosion resistance of cement-based materials by carbonation curing to carbonic acid solution[J]. Journal of the Chinese Ceramic Society, 2023, 51(11): 2890-2904 (in Chinese). [16] 罗树琼, 葛亚丽, 潘崇根, 等. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 104-109. LUO S Q, GE Y L, PAN C G, et al. Microstructure of fly ash activated by microwave and early performance of fly ash-cement paste[J]. Materials Reports, 2024, 38(7): 104-109 (in Chinese). [17] 刘 琼, 程安楠, 肖建庄. 通过三步碳化强化再生透水混凝土的性能研究[J]. 广西大学学报(自然科学版), 2023, 48(6): 1331-1339. LIU Q, CHENG A N, XIAO J Z. Study on performance of reinforcement of recycled pervious concrete by three-step carbonation[J]. Journal of Guangxi University (Natural Science Edition), 2023, 48(6): 1331-1339 (in Chinese). [18] 田耀刚, 蒋 静, 赵 成, 等. 水性环氧树脂改性高早强砂浆的耐温机制[J/OL]. 吉林大学学报(工学版), 1-8 (2024-02-28) [2025-03-18]. https://doi.org/10.13229/j.cnki.jdxbgxb.20231161. TIAN Y G, JIANG J, ZHAO C, et al. Temperature resistance mechanism of high-early-strength cement mortar modified with waterborne epoxy resin[J/OL]. Journal of Jilin University (Engineering and Technology Edition), 1-8 (2024-02-28) [2025-03-18]. https://doi.org/10.13229/j.cnki.jdxbgxb.20231161 (in Chinese). [19] ULIASZ-BOCHEN'CZYK A, GAWLICKI M, MOKRZYCKI E, et al. Polymorphic varieties of CaCO3 as a product of cement grout carbonization[J]. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 2013, 29(2): 79-88. [20] 魏 超. 钢渣-冷轧废水捕集CO2动力学及碳酸化渣资源利用研究[D]. 赣州: 江西理工大学, 2021. WEI C. Kinetics of CO2 capture by steel slag-cold rolling wastewater and utilization of carbonated slag resources[D]. Ganzhou: Jiangxi University of Science and Technology, 2021 (in Chinese). [21] 幸超群, 邓怡帆, 笪俊伟, 等. 硅灰-粉煤灰复合矿物掺合料对混凝土性能的影响研究[J]. 新型建筑材料, 2022, 49(9): 52-56+85. XING C Q, DENG Y F, DA J W, et al. Research on the influence of silica fume-fly ash composite mineral admixture on concrete performance[J]. New Building Materials, 2022, 49(9): 52-56+85 (in Chinese). [22] YUE G B, ZHANG P, LI Q Y, et al. Performance analysis of a recycled concrete interfacial transition zone in a rapid carbonization environment[J]. Advances in Materials Science and Engineering, 2018, 2018(1): 1962457. [23] 徐波阳, 吴萌萌. 碳化作用对再生骨料混凝土的力学性能影响分析[J]. 交通科技, 2023(6): 144-147. XU B Y, WU M M. Analysis of the influence of carbonization on the mechanical properties of recycled aggregate concrete[J]. Transportation Science & Technology, 2023(6): 144-147 (in Chinese). |