[1] 燕 伟, 李 驰, 邢渊浩, 等. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J/OL]. 材料导报, 1-15 (2024-05-21)[2024-08-29]. http://kns.cnki.net/kcms/detail/50.1078.tb.20240518.1505.012.html. YAN W, LI C, XING Y H, et al. Experimental study on carbon fixation by circulating fluidized bed multi-component solid waste fly ash based cement mortar [J/OL]. Materials Review, 1-15 (2024-05-21)[2024-08-29]. http://kns.cnki.net/kcms/detail/50.1078.tb.20240518.1505.012.html (in Chinese). [2] 燕可洲, 孙向阳, 张鑫泽, 等. 循环流化床粉煤灰组成与含量对其水化胶凝性能的影响[J]. 硅酸盐通报, 2024, 43(2): 564-571+583. YAN K Z, SUN X Y, ZHANG X Z, et al. Effects of composition and content of CFBFA on hydrated cementitious properties[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 564-571+583 (in Chinese). [3] 张子晗, 李晓姣, 王红涛, 等. 循环流化床粉煤灰特性对重金属赋存迁移的影响研究进展[J]. 应用化工, 2023, 52(11): 3205-3209. ZHANG Z H, LI X J, WANG H T, et al. Research progress on influence of fly ash characteristics on occurrence and migration of heavy metals in circulating fluidized bed[J]. Applied Chemical Industry, 2023, 52(11): 3205-3209 (in Chinese). [4] 吕俊复, 蒋 苓, 柯希玮, 等. 碳中和背景下循环流化床燃烧技术在中国的发展前景[J]. 煤炭科学技术, 2023, 51(1): 514-522. LYU J F, JIANG L, KE X W, et al. Future of circulating fluidized bed combustion technology in China for carbon neutralization[J]. Coal Science and Technology, 2023, 51(1): 514-522 (in Chinese). [5] 吕俊复, 周 托, 张 扬, 等. 碳中和目标下循环流化床锅炉技术的展望[J]. 动力工程学报, 2022, 42(11): 1005-1012. L J F, ZHOU T, ZHANG Y, et al. Prospect of the circulating fluidized bed boiler technology for the goal of carbon neutralization[J]. Journal of Chinese Society of Power Engineering, 2022, 42(11): 1005-1012 (in Chinese). [6] 王 超, 宋国良, 吕清刚. 循环流化床超低NOx与SO2排放技术研究进展[J]. 洁净煤技术, 2021, 27(4): 17-25. WANG C, SONG G L, LYU Q G. Research progress on ultra-low NOx and SO2 emission control technology for CFB boilers[J]. Clean Coal Technology, 2021, 27(4): 17-25 (in Chinese). [7] 程 志, 魏林海, 韩 涛, 等. 循环流化床脱硫灰渣性质及应用研究进展[J]. 锅炉技术, 2018, 49(5): 34-38. CHENG Z, WEI L H, HAN T, et al. Research advances on properties and applications of circulating fluidized bed desulfurization ashes[J]. Boiler Technology, 2018, 49(5): 34-38 (in Chinese). [8] 孙志刚, 张建波, 李少鹏. 循环流化床粉煤灰钙的赋存形态及选择性脱除[J]. 有色金属(冶炼部分), 2022(8): 126-133. SUN Z G, ZHANG J B, LI S P. Occurrence and selective removal of Ca in circulating fluidized bed coal fly ash[J]. Nonferrous Metals (Extractive Metallurgy), 2022(8): 126-133 (in Chinese). [9] 陈国杰, 袁 进, 刘玉香, 等. 循环流化床粉煤灰中重金属的浸出性研究进展[J]. 应用化工, 2022, 51(7): 2121-2125+2133. CHEN G J, YUAN J, LIU Y X, et al. Progress of study on leaching characteristics of heavy metals from circulating fluidized bed fly ash[J]. Applied Chemical Industry, 2022, 51(7): 2121-2125+2133 (in Chinese). [10] 王文翰, 马志斌, 路广军, 等. 循环流化床粉煤灰无定形组分化学组成与结构特性[J]. 洁净煤技术, 2022, 28(7): 167-176. WANG W H, MA Z B, LU G J, et al. Chemical composition and structural characteristics of amorphous components in circulating fluidized bed-derived coal fly ash[J]. Clean Coal Technology, 2022, 28(7): 167-176 (in Chinese). [11] 李端乐, 王栋民, 任才富. 磨细循环流化床粉煤灰-石灰的水化特性[J]. 科学技术与工程, 2020, 20(28): 11735-11739. LI D L, WANG D M, REN C F. Hydration characteristics of grinding circulating fluidized bed fly ash-lime[J]. Science Technology and Engineering, 2020, 20(28): 11735-11739 (in Chinese). [12] 李端乐, 王栋民, 袁 宁. 循环流化床粉煤灰对矸石胶结充填材料性能的影响[J]. 硅酸盐通报, 2020, 39(8): 2401-2407+2432. LI D L, WANG D M, YUAN N. Influence of circulating fluidized bed fly ash on properties of gangue cemented filling materials[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(8): 2401-2407+2432 (in Chinese). [13] 肖 域, 王晓辉, 马淑花, 等. 循环流化床粉煤灰中钙的赋存状态[J]. 建筑材料学报, 2021, 24(3): 663-670. XIAO Y, WANG X H, MA S H, et al. Occurrence of calcium in fly ash from circulating fluidized bed[J]. Journal of Building Materials, 2021, 24(3): 663-670 (in Chinese). [14] 姚 源, 王 敏, 张凯峰, 等. 循环流化床固硫灰与磨细灰渣用作混凝土掺合料的关键技术研究[J]. 新型建筑材料, 2020, 47(2): 88-91. YAO Y, WANG M, ZHANG K F, et al. Study on key technology of circulating fluidized bed solid sulfur ash and ground ash used as concrete admixture[J]. New Building Materials, 2020, 47(2): 88-91 (in Chinese). [15] 刘 泽, 李 丽, 张 媛, 等. 粉煤灰基地质聚合物固化重金属Pb2+的研究[J]. 硅酸盐通报, 2018, 37(4): 1382-1386. LIU Z, LI L, ZHANG Y, et al. Immobilization of heavy metal Pb2+ using fly ash based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(4): 1382-1386 (in Chinese). [16] 赵风清, 刘鹏蛟, 武振刚. 固硫灰渣水泥的开发[J]. 粉煤灰综合利用, 2002, 16(6): 39-40. ZHAO F Q, LIU P J, WU Z G. Development of ash cement for sulfur fixation[J]. Fly Ash Comprehensive Utilization, 2002, 16(6): 39-40 (in Chinese). [17] 陈雪梅, 卢忠远, 吕淑珍. 固硫灰制备贝利特-硫铝酸钙水泥熟料的研究[J]. 水泥, 2011(2): 6-8. CHEN X M, LU Z Y, LV S Z. Try to prepare belite-calcium sulphoaluminate cement clinker with CFBC ashs[J]. Cement, 2011(2): 6-8 (in Chinese). [18] 杨 达, 庞来学, 宋 迪, 等. 粉煤灰对碱激发矿渣/粉煤灰体系的作用机理研究[J]. 硅酸盐通报, 2021, 40(9): 3005-3011. YANG D, PANG L X, SONG D, et al. Reaction mechanism of fly ash in alkali-activated slag/fly ash system[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 3005-3011 (in Chinese). [19] 黄 华, 郭梦雪, 张 伟, 等. 粉煤灰-矿渣基地聚物混凝土力学性能与微观结构[J]. 哈尔滨工业大学学报, 2022, 54(3): 74-84. HUANG H, GUO M X, ZHANG W, et al. Mechanical property and microstructure of geopolymer concrete based on fly ash and slag[J]. Journal of Harbin Institute of Technology, 2022, 54(3): 74-84 (in Chinese). [20] 张 墨, 吕 太. 循环流化床飞灰在混凝土中的应用研究[J]. 粉煤灰综合利用, 2007, 21(3): 25-27. ZHANG M, LYU T. The application study on circulating fluidized bed fly ash in concrete[J]. Fly Ash Comprehensive Utilization, 2007, 21(3): 25-27 (in Chinese). [21] CHINDAPRASIRT P, RATTANASAK U. Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer[J]. Waste Management, 2010, 30(4): 667-672. [22] 王 智. 流化床燃煤固硫渣特性及其建材资源化研究[D]. 重庆: 重庆大学, 2002. WANG Z. Study on characteristics of sulfur fixation slag in fluidized bed coal and resource utilization of building materials [D]. Chongqing: Chongqing University, 2002 (in Chinese). [23] RABBANI M, DINCER I, NATERER G F. Efficiency assessment of a photo electrochemical chloralkali process for hydrogen and sodium hydroxide production[J]. International Journal of Hydrogen Energy, 2014, 39(5): 1941-1956. [24] VINAI R, SOUTSOS M. Production of sodium silicate powder from waste glass cullet for alkali activation of alternative binders[J]. Cement and Concrete Research, 2019, 116: 45-56. [25] SHON C S, MUKHOPADHYAY A K, SAYLAK D, et al. Potential use of stockpiled circulating fluidized bed combustion ashes in controlled low strength material (CLSM) mixture[J]. Construction and Building Materials, 2010, 24(5): 839-847. [26] ZHANG W, LIU X M, ZHANG Z Q, et al. Circulating fluidized bed fly ash-blast furnace slag based cementitious materials: hydration behaviors and performance[J]. Construction and Building Materials, 2022, 342: 128006. [27] LIU W H, LIU X Y, ZHANG L, et al. Rheology, mechanics, microstructure and durability of low-carbon cementitious materials based on circulating fluidized bed fly ash: a comprehensive review[J]. Construction and Building Materials, 2024, 411: 134688. |