[1] 邢安安, 苗俊艳, 刘欣雨, 等. 磷石膏应用现状和热点趋势的文献计量学分析[J/OL]. 应用化工, 2025: 1-13 (2025-01-23) [2025-02-10]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SXHG2025012200D&dbname=CJFD&dbcode=CJFQ. XING A A, MIAO J Y, LIU X Y, et al. Bibliometric analysis of the application status and hot trend of phosphogypsum[J/OL]. China Industrial Economics, 2025: 1-13. (2025-01-23) [2025-02-10]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=SXHG2025012200D&dbname=CJFD&dbcode=CJFQ (in Chinese). [2] 廖 滢, 何 妮, 何春云, 等. 磷石膏协同多元固废处理及资源化利用研究进展[J]. 云南化工, 2025, 52(1): 38-43. LIAO Y, HE N, HE C Y, et al. Overview of phosphogypsum synergistic multifunctional solid waste treatment and resource utilization[J]. Yunnan Chemical Technology, 2025, 52(1): 38-43 (in Chinese). [3] 吕淑莲, 李茂辉. 磷石膏基复合充填胶凝材料强度性能的分析研究[J]. 混凝土, 2024(12): 127-132. LÜ S L, LI M H. Research the strength properties of phosphogypsum based composite filling materials[J]. Concrete, 2024(12): 127-132 (in Chinese). [4] 潘 恒. 磷石膏制砖工艺探讨[J]. 贵州化工, 2000, 25(4): 48-51. PAN H. Discussion on brick-making technology of phosphogypsum[J]. Guizhou Chemical Industry, 2000, 25(4): 48-51 (in Chinese). [5] 俞 波, 陈吉春. 非锻烧磷石膏砖的研究[J]. 科技信息(学术版), 2006(3): 244-245. YU B, CHEN J C. Research on non-firing phosphogypsum bricks[J]. Science and Technology Information (Academic Edition), 2006(3): 244-245 (in Chinese). [6] 王雪梅, 刘代俊, 钟本和. 磷石膏砖块的研制[J]. 化工矿物与加工, 2002, 31(1): 16-18. WANG X M, LIU D J, ZHONG B H. Study on the preparation of phosphogypsum-bricks[J]. Industrial Minerals and Porocessing, 2002, 31(1): 16-18 (in Chinese). [7] 张 齐, 杨 璐. 我省推广使用磷石膏标准砖[N]. 贵州日报, 2008-07-04(005). ZHANG Q, YANG L. Our province promotes the use of phosphogypsum standard bricks[N]. Guizhou Daily, 2008-07-04(005) (in Chinese). [8] 何玉鑫, 万建东, 华苏东, 等. 免煅烧磷石膏砖的制备和性能研究[J]. 材料导报, 2012, 26(增刊2): 324-327. HE Y X, WAN J D, HUA S D, et al. Preparation and performance study of non-calcined phosphogypsum brick[J]. Materials Reports, 2012, 26(supplement 2): 324-327 (in Chinese). [9] 石 艳. 水硬性磷石膏砖的研制[J]. 建材与装饰, 2019(35): 49-50. SHI Y. Development of hydraulic phosphogypsum brick[J]. Construction Materials & Decoration, 2019(35): 49-50 (in Chinese). [10] 叶路生, 柳 伟, 罗郅清, 等. 非烧结磷石膏砖的制备研究[J]. 环境工程, 2013, 31(增刊1): 568-569+564. YE L S, LIU W, LUO Z Q, et al. Research on the preparation of non-sintered phosphogypsum brick[J]. Environmental Engineering, 2013, 31(supplement 1): 568-569+564 (in Chinese). [11] 郭小雨. 改性矿渣水泥在免烧渣土砖与磷石膏砖中的胶结性能研究[D]. 马鞍山: 安徽工业大学, 2020. GUO X Y. Research on the cementing performance of modified slag cement in non-fired slag soil bricks and phosphogypsum bricks[D]. Maanshan: Anhui Universit of Technology, 2020 (in Chinese). [12] 何晓琴, 杨 帆, 陈聪地, 等. 环氧树脂固化剂在免烧磷石膏砖中的应用探索[J]. 广州化工, 2022, 50(5): 44-47. HE X Q, YANG F, CHEN C D, et al. Application of epoxy resin curing agent in unburned phosphogypsum brick[J]. Guangzhou Chemical Industry, 2022, 50(5): 44-47 (in Chinese). [13] PASCHOALIN F J A, CHAVES H C, GHERMANDI A, et al. Compressive strength assessment bricks manufactured with phosphogypsum in different dosages[J]. Acta Scientiarum Technology, 2023, 46(1): e64840. [14] BOUCHHIMA L, ROUIS M J, CHOURA M. A study of phosphogypsum-crushing sand based bricks grade negligible weathering[J]. Revista Romana de Materiale-Romanian Journal of Materials, 2017. 47(1): 106-111. [15] OUBAHA S, TAHA Y, LOUTOU M, et al. Fired brick production using phosphogypsum and phosphate mining waste[J]. Construction and Building Materials, 2023, 403: 133149. [16] 巫雨田. 大空区连续充填的挡墙参数优化方法及应用[J]. 化工矿物与加工, 2022, 51(5): 23-27. WU Y T. Optimization and application of parameters of the retaining wall for continuous filling in a large mined-out area[J]. Industrial Minerals & Processing, 2022, 51(5): 23-27 (in Chinese). [17] 曹泽宇, 张静辉, 何 伟, 等. 充填挡墙受力及变形模拟分析[J]. 山西建筑, 2021, 47(20): 72-74. CAO Z Y, ZHANG J H, HE W, et al. Stress and deformation simulation analysis of filling retaining wall[J]. Shanxi Architecture, 2021, 47(20): 72-74 (in Chinese). [18] 张爱卿, 吴爱祥, 王贻明, 等. 分段胶结充填法非胶结充填体顶水高度的力学模型[J]. 中国有色金属学报, 2021, 31(6): 1686-1693. ZHANG A Q, WU A X, WANG Y M, et al. Mechanical model of water head height of non-cemented backfill in sublevel stoping with cemented filling[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(6): 1686-1693 (in Chinese). [19] YANG B H, WU A X, MIAO X X, et al. 3D characterization and analysis of pore structure of packed ore particle beds based on computed tomography images[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(3): 833-838. [20] YANG B H, WU A X, NARSILIO G A, et al. Use of high-resolution X-ray computed tomography and 3D image analysis to quantify mineral dissemination and pore space in oxide copper ore particles[J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(9): 965-973. [21] 郭凌云, 陈 波, 高志涵, 等. 基于细观数值模拟的玄武岩纤维泡沫混凝土力学性能[J/OL]. 复合材料学报, 2024: 1-14 (2024-07-04) [2025-02-10]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20240702001&dbname=CJFD&dbcode=CJFQ. GUO L Y, CHEN B, GAO Z H, et al. Mechanical properties of basalt fiber foam concrete based on meso-numerical simulation[J/OL]. China Industrial Economics, 2024: 1-14 (2024-07-04) [2025-02-10]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=FUHE20240702001&dbname=CJFD&dbcode=CJFQ (in Chinese). [22] 袁志颖, 陈 波, 陈家林, 等. 泡沫混凝土孔结构表征及其对力学性能的影响[J]. 复合材料学报, 2023, 40(7): 4117-4127. YUAN Z Y, CHEN B, CHEN J L, et al. Characterization of pore structure of foamed concrete and its influence on performance[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 4117-4127 (in Chinese). [23] DEHESTANI A, GHAREHBAGHI S, FATHI A. Pervious concrete for desired porosity: influence of w/c ratio and a rheology-modifying admixture[J]. Construction and Building Materials, 2021, 268: 121084. [24] 张著芳, 徐桂弘, 李振学, 等. 碳酸盐岩质机制砂石制备高性能自密实混凝土微孔隙结构试验研究[J]. 混凝土, 2024(5): 108-116. ZHANG Z F, XU G H, LI Z X, et al. Experimental study on micropore structure of high performance self-compacting concrete prepared by carbonate sand[J]. Concrete, 2024(5): 108-116 (in Chinese). |