BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (11): 3934-3946.DOI: 10.16552/j.cnki.issn1001-1625.2025.0754
• Review • Previous Articles Next Articles
YANG Jingxian1, MA Liping1, HE Binbin1, WU Zhangyu2, SHE Wei2
Received:2025-07-30
Revised:2025-09-04
Online:2025-11-15
Published:2025-12-04
CLC Number:
YANG Jingxian, MA Liping, HE Binbin, WU Zhangyu, SHE Wei. Research Progress on Phosphogypsum-Based Solid Waste Alkali-Activated Cementitious Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(11): 3934-3946.
| [1] 缪昌文, 穆 松. “双碳”目标下水泥基材料绿色低碳路径思考与展望[J]. 未来城市设计与运营, 2022(2): 10-16. MIAO C W, MU S. Thoughts and prospects on the green and low-carbon pathway of cement-based materials under the "Dual-Carbon" goals[J]. Future City Studies, 2022(2): 10-16 (in Chinese). [2] 马丽萍. 云南磷石膏资源化综合利用现状及发展思考[J]. 云南化工, 2019, 46(11): 48-56. MA L P. Comprehensive utilization of phosphogypsum in Yunnan-present situation and analysis[J]. Yunnan Chemical Technology, 2019, 46(11): 48-56 (in Chinese). [3] 李 芳, 谷海明. 浅析磷肥企业磷石膏堆存与综合利用[J]. 环境科学导刊, 2016, 35(增刊1): 98-99, 117. LI F, GU H M. Analysis of stockpiling and comprehensive utilization of phosphogypsum in the phosphate fertilizer industry[J]. Environmental Science Survey, 2016, 35(supplement 1): 98-99, 117 (in Chinese). [4] 温小韵, 童 雄, 尚江涛, 等. 磷石膏基胶凝材料的力学性能及应用研究进展[J]. 硅酸盐通报, 2025, 44(3): 953-969. WEN X Y, TONG X, SHANG J T, et al. Progress on application and mechanical properties of phosphogypsum cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(3): 953-969 (in Chinese). [5] LEE J, YI S C. Assessment of radiological impact on the surrounding environment and biota for phosphogypsum waste stockyard in Korean facility[J]. Environmental Monitoring and Assessment, 2023, 195(6): 767. [6] BLEBEA-APOSTU A M, CLAUDIA GOMOIU M, MIRCEA MĂRGINEANU R, et al. The Bacau (Romania) phosphogypsum stacks as a source of radioactive threat: a case study[J]. Isotopes in Environmental and Health Studies, 2025, 61(1): 61-75. [7] 林宗寿, 黄 赟. 磷石膏基免煅烧水泥的开发研究[J]. 武汉理工大学学报, 2009, 31(4): 53-55. LIN Z S, HUANG Y. Investigation on phosphogypsum-base non-calcined cement[J]. Journal of Wuhan University of Technology, 2009, 31(4): 53-55 (in Chinese). [8] PLIAKA M, GAIDAJIS G. Potential uses of phosphogypsum: a review[J]. Journal of Environmental Science and Health, Part A, 2022, 57(9): 746-763. [9] SAADAOUI E, GHAZEL N, BEN ROMDHANE C, et al. Phosphogypsum: potential uses and problems: a review[J]. International Journal of Environmental Studies, 2017, 74(4): 558-567. [10] ENNACIRI Y, BETTACH M. Procedure to convert phosphogypsum waste into valuable products[J]. Materials and Manufacturing Processes, 2018, 33(16): 1727-1733. [11] YIN X, MA L P, LI K, et al. Preparation of phosphogypsum-based cemented paste backfill and its environmental impact based on multi-source industrial solid waste[J]. Construction and Building Materials, 2023, 404: 133314. [12] CHEN B J, WU F H, QU G F, et al. Waste control by waste: a comparative study on the application of carbide slag and quicklime in preparation of phosphogypsum-based ecological restoration materials[J]. Chemical Engineering and Processing-Process Intensification, 2022, 178: 109051. [13] WANG Y F, LIU P, KONG D W, et al. Investigation of the properties and microscopic mechanism of red mud-phosphogypsum-based composite cementitious materials[J]. Journal of Building Engineering, 2025, 101: 111962. [14] SHI Y, LI Y, WANG H W. Eco-friendly solid waste-based cementitious material containing a large amount of phosphogypsum: performance optimization, micro-mechanisms, and environmental properties[J]. Journal of Cleaner Production, 2024, 471: 143335. [15] CHEN S, WANG C Q, HE Z Y, et al. CO2 resource utilization in red mud modified phosphogypsum cementitious material: strength development mechanism, heavy metals evaluation and carbon emission reduction effect[J]. Fuel, 2025, 390: 134684. [16] CHEN Y X, REN G S, TONG H, et al. Novel solid-waste-derived activation materials from phosphogypsum, granulated blast-furnace slag, and calcium carbide slag for sustainable marine construction[J]. Case Studies in Construction Materials, 2025, 23: e05096. [17] HU S X, SONG Z Y, TAN Y Z, et al. Physico-mechanical and environmental performance of phosphogypsum-based artificial aggregates formed of compacting-crushing and pouring-crushing methods[J]. Journal of Environmental Chemical Engineering, 2025, 13(3): 116669. [18] 黄照昊, 罗康碧, 李沪萍. 磷石膏中杂质种类及除杂方法研究综述[J]. 硅酸盐通报, 2016, 35(5): 1504-1508. HUANG Z H, LUO K B, LI H P. Types of impurity in phosphogypsum and the method of removing impurity research review[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(5): 1504-1508 (in Chinese). [19] 马林转, 宁 平, 杨月红, 等. 磷石膏预处理工艺综述[J]. 磷肥与复肥, 2007, 22(3): 62-63. MA L Z, NING P, YANG Y H, et al. Review on the technology of phosphogypsum pretreatment[J]. Phosphate and Compound Fertilizer, 2007, 22(3): 62-63 (in Chinese). [20] 巴太斌, 徐亚中, 卢文运, 等. 石灰中和预处理磷石膏试验研究[J]. 新型建筑材料, 2018, 45(2): 96-99. BA T B, XU Y Z, LU W Y, et al. Experimental study on the lime neutralizing pretreatment of phosphogypsum[J]. New Building Materials, 2018, 45(2): 96-99 (in Chinese). [21] 茹晓红. 磷石膏基胶凝材料的制备理论及应用技术研究[D]. 武汉: 武汉理工大学, 2013: 4-5. RU X H. Processing theory and application technology research of phosphogypsum based gypsum plaster[D]. Wuhan: Wuhan University of Technology, 2013: 4-5 (in Chinese). [22] POTGIETER J H, POTGIETER S S, MCCRINDLE R I, et al. An investigation into the effect of various chemical and physical treatments of a South African phosphogypsum to render it suitable as a set retarder for cement[J]. Cement and Concrete Research, 2003, 33(8): 1223-1227. [23] 许晴莹, 杨鼎宜, 吕 伟, 等. 球磨时间对磷石膏基胶凝材料性能影响研究[J]. 无机盐工业, 2022(5): 101-108. XU Q Y, YANG D Y, LV W, et al. Effect of grinding time on properties of phosphogypsum based cementitious materials[J]. Inorganic Chemicals Industry, 2022(5): 101-108 (in Chinese). [24] 赖婧怡. 磷石膏浮选提纯工艺技术研究[D]. 武汉:武汉工程大学, 2023: 5-7. LAI J Y. Study on flotation purification process technology of phosphogypsum[D]. Wuhan: Wuhan University of Technology, 2023: 5-7 (in Chinese). [25] 段庆奎, 王立明. 闪烧法-磷石膏的无害化处理新工艺[J]. 宁夏石油化工, 2004, 23(3): 13-16. DUAN Q K, WANG L M. Flash sintering method: a novel process for the harmless treatment of phosphogypsum[J]. Ningxia Petrochemical Industry, 2004, 23(3): 13-16 (in Chinese). [26] GARG M, PUNDIR A, SINGH R. Modifications in water resistance and engineering properties of β-calcium sulphate hemihydrate plaster-superplasticizer blends[J]. Materials and Structures, 2016, 49(8): 3253-3263. [27] LEWRY A J, WILLIAMSON J. The setting of gypsum plaster[J]. Journal of Materials Science, 1994, 29(20): 5279-5284. [28] 彭小芹. 土木工程材料(第四版)[M]. 重庆: 重庆大学出版社, 2021: 75. PENG X Q. Civil engineering materials (4th ed)[M]. Chongqing: Chongqing University Press, 2021: 75 (in Chinese). [29] 曹瑞林. 含镍铁渣复合碱激发胶凝材料的反应机理与微观特性[D]. 南京: 东南大学, 2021: 6-9. CAO R L. Reaction mechanism and microstructural characteristics of alkali-activated cements incorporation ferronickel slag[D]. Nanjing: Southeast University, 2021: 6-9 (in Chinese). [30] ROY D M. Alkali-activated cements opportunities and challenges[J]. Cement and Concrete Research, 1999, 29(2): 249-254. [31] WANG A G, ZHENG Y, ZHANG Z H, et al. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: a review[J]. Engineering, 2020, 6(6): 695-706. [32] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44: 299-327. [33] WANG Q, BIAN H G, LI M Z, et al. Effects of a water-glass module on compressive strength, size effect and stress-strain behavior of geopolymer recycled aggregate concrete[J]. Crystals, 2022, 12(2): 218. [34] LI Y F, DONG Y H, EL-NAGGAR M R, et al. The influence of particle size and calcium content on performance characteristics of metakaolin- and fly-ash-based geopolymer gels[J]. Gels, 2024, 10(10): 639. [35] HESHMAT M, AMER I, ELGABBAS F, et al. Effect of binder and activator composition on the characteristics of alkali-activated slag-based concrete[J]. Scientific Reports, 2024, 14(1): 13502. [36] GLASSER F P. Cements from micro to macrostructures[J]. British Ceramic Transactions and Journal, 1990, 89(6): 195-202. [37] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research, 2005, 35(6): 1204-1209. [38] 段思宇. 钢渣-粉煤灰-脱硫石膏复合胶凝体系的反应机制及应用研究[D]. 太原: 山西大学, 2020: 11-12. DUAN S Y. Reaction mechanisms and application study of steel slag-fly ash-desulfurized gypsum composite cementitious system[D]. Taiyuan: Shanxi University, 2020: 11-12 (in Chinese). [39] 郝建帅, 周子涵, 陈忠辉, 等. 钢渣在矿山充填胶凝材料中的水化硬化性能研究现状分析[J]. 矿业科学学报, 2024, 9(4): 573-585. HAO J H, ZHOU Z H, CHEN Z H, et al. Review of hydration and hardening properties of steel slag in mine filling cementitious materials[J]. Journal of Mining Science and Technology, 2024, 9(4): 573-585 (in Chinese). [40] 宁朝阳. 煤矸石-磷石膏系道路基层复合胶凝材料性能研究[J]. 交通世界, 2023(17): 34-36. NING C Y. Study on properties of coal gangue-phosphogypsum composite cementitious material for road base[J]. Transpoworld, 2023(17): 34-36 (in Chinese). [41] DEĞIRMENCI N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products[J]. Construction and Building Materials, 2008, 22(8): 1857-1862. [42] JIN Z H, CUI C J, SU Y, et al. Improvement of the mechanical properties of beta-hemihydrate phosphogypsum by incorporating wet-ground low-calcium fly ash slurries[J]. Construction and Building Materials, 2024, 428: 136371. [43] DENG F, YE J, LIU Y L, et al. Influence of cement on properties of calcined phosphogypsum based composite cementitious materials[J]. Journal of Materials Research and Technology, 2023, 24: 3145-3156. [44] HUANG X, LIAO J M, ZHANG J F, et al. Insight into the durability of concrete based on ultrafine ground granulated blast furnace slag, phosphogypsum, and steel slag[J]. Journal of Materials Research and Technology, 2025, 38: 49-61. [45] LIAO Y S, HU M T, YAO J X, et al. Calcium sulfoaluminate cementitious materials with steel slag and calcined phosphogypsum: hydration and physico-mechanical properties[J]. Construction and Building Materials, 2025, 460: 139795. [46] BOUCHHIMA L, ROUIS M J, CHOURA M. Engineering properties of wade sand-lime-cement-phosphogypsum buildingbrick grade MW[J]. International Journal of Engineering and Advanced Technology, 2013, 2(4): 43-49. [47] SAIKHEDE S R, SATONE S R. An experimental investigation of partial replacement of cement by various percentage of phosphogypsum in cement concrete.[J]. International Journal of Engineering Research and Applications. 2014, 4(7): 37-40. [48] YANG L, ZHANG Y S, YAN Y. Utilization of original phosphogypsum as raw material for the preparation of self-leveling mortar[J]. Journal of Cleaner Production, 2016, 127: 204-213. [49] SHEN Y, QIAN J S, CHAI J Q, et al. Calcium sulphoaluminate cements made with phosphogypsum: production issues and material properties[J]. Cement and Concrete Composites, 2014, 48: 67-74. [50] SINGH M. Treating waste phosphogypsum for cement and plaster manufacture[J]. Cement and Concrete Research, 2002, 32(7): 1033-1038. [51] HUANG Y, LIN Z S. Investigation on phosphogypsum-steel slag-granulated blast-furnace slag-limestone cement[J]. Construction and Building Materials, 2010, 24(7): 1296-1301. [52] HUA S D, WANG K J, YAO X, et al. Effects of fibers on mechanical properties and freeze-thaw resistance of phosphogypsum-slag based cementitious materials[J]. Construction and Building Materials, 2016, 121: 290-299. [53] UMADEVI R, KAVITHA S, SHASHI KIRAN C R, et al. Studies on elevated temperature of fiber reinforced phosphogypsum concrete[J]. International Journal of Civil Engineering and Technology, 2016, 7(2): 234-246. [54] YANG J K, LIU W C, ZHANG L L, et al. Preparation of load-bearing building materials from autoclaved phosphogypsum[J]. Construction and Building Materials, 2009, 23(2): 687-693. [55] KUMAR S. A perspective study on fly ash-lime-gypsum bricks and hollow blocks for low cost housing development[J]. Construction and Building Materials, 2002, 16(8): 519-525. [56] NAIK N S, BAHADURE B M, JEJURKAR C L. Strength and durability of fly ash, cement and gypsum bricks[J]. International Journal of Computational Engineering Research, 2014, 4(5): 1-4. [57] MUN K, SO S. Properties of cement mortar with phosphogpysum under steam curing condition[J]. Research Letters in Materials Science, 2008, 2008: 382490. [58] SINDHUJA M, CHANDRASEKHAR E, RAJASEKHAR K. Investigation on permeability charecteristics of phosphogypsum based concrete[J]. IOSR Journal of Mechanical and Civil Engineering, 2016, 13(6): 191-193. [59] HUANG Y Q, LU J X, CHEN F X, et al. The chloride permeability of persulphated phosphogypsum-slag cement concrete[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2016, 31(5): 1031-1037. [60] MUN K J, HYOUNG W K, LEE C W, et al. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator[J]. Construction and Building Materials, 2007, 21(6): 1342-1350. [61] SHEN W G, GAN G J, DONG R, et al. Utilization of solidified phosphogypsum as Portland cement retarder[J]. Journal of Material Cycles and Waste Management, 2012, 14(3): 228-233. [62] DEĞIRMENCI N, OKUCU A. Usability of fly ash and phosphogypsum in manufacturing of building products[J]. Journal of Engineering Sciences, 2007, 13(2): 273-278. [63] CHEN L, LIU T T, CHENG M Q, et al. Enhanced strength and fluoride ion solidification/stabilization mechanism of modified phosphogypsum backfill material[J]. Construction and Building Materials, 2024, 449: 138572. [64] ZHOU S T, LI X B, ZHOU Y N, et al. Effect of phosphorus on the properties of phosphogypsum-based cemented backfill[J]. Journal of Hazardous Materials, 2020, 399: 122993. [65] YIN X, LI K, MA L P, et al. Development of eco-cemented paste backfill by reutilizing multi-source industrial solid waste: properties, hydration processes, and environmental impacts[J]. Powder Technology, 2025, 464: 121276. [66] 湖北昌耀新材料股份有限公司, 武汉理工大学. 一种透水混凝土及其制备方法: 中国, CN119977465A[P]. 2025-05-13. Hubei Changyao New Materials Co., Ltd., Wuhan University of Technology. A kind of pervious concrete and its preparation method: China, CN119977465A[P]. 2025-05-13 (in Chinese). [67] 昆明理工大学, 云南蔚蓝环境工程技术有限公司, 江西省蔚蓝环境工程技术有限公司, 等. 一种磷石膏基多固废再生骨料及其制备方法和应用: 中国, CN119954477A[P]. 2025-05-09. Kunming University of Science and Technology, Yunnan Weilan Environmental Engineering Technology Co., Ltd., Jiangxi Weilan Environmental Engineering Technology Co., Ltd., et al. A phosphogypsum-based multi-solid-waste recycled aggregate and its preparation method and application: China, CN119954477A[P]. 2025-05-09 (in Chinese). [68] 湖北益通建设股份有限公司. 一种大掺量磷石膏基稳定材料及在道路基层中应用: 中国, CN112125630B[P]. 2022-12-06. Hubei Yitong Construction Co., Ltd. A high-content phosphogypsum-based stabilized material and its application in road base course: China, CN112125630B[P]. 2022-12-06 (in Chinese). [69] 东南大学, 中国电建集团贵阳勘测设计研究院有限公司. 一种高掺量磷石膏协同多固废的环保型路基填料及其制备与应用: 中国, CN120309284A[P]. 2025-07-15. Southeast University, Powerchina Guiyang Engineering Corporation Limited. An environmentally friendly roadbed filler with high phosphogypsum content synergizing multiple solid wastes and its preparation and application: China, CN120309284A[P]. 2025-07-15 (in Chinese). [70] 湖北益通建设股份有限公司. 一种磷石膏基加气混凝土砌块及其制备方法: 中国, CN120117873A[P]. 2025-06-10. Hubei Yitong Construction Co., Ltd. A phosphogypsum-based aerated concrete block and its preparation method: China, CN120117873A[P]. 2025-06-10 (in Chinese). [71] 贵州省建筑材料科学研究设计院有限责任公司. 一种轻质磷石膏墙板及其制备方法: 中国, CN119822773A[P]. 2025-04-15. Guizhou Building Materials Research & Design Institute Co., Ltd. A lightweight phosphogypsum wallboard and its preparation method: China, CN119822773A[P]. 2025-04-15 (in Chinese). |
| [1] | YE Jisheng, MA Ying, LI Yuwei, TAI An, WANG Jiahao. Effect of Early CO2 Curing on Properties of Steel Slag Solid Waste Cementitious Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3326-3336. |
| [2] | ZHOU Yifan, ZHANG Weiye, CHEN Anjian, RAN Jinlin, WANG Dongxing. Review on Performance Enhancements and Engineering Applications of Geopolymer Grouting Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2873-2890. |
| [3] | LI Yisheng, LYU Wei, WU Chiqiu, YU Zhengkang, HE Jing, SHUI Zhonghe. Hardened Body Preparation and Performance Adjustment of High Content Phosphogypsum Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2944-2954. |
| [4] | DENG Xinghui, XU Guihong, BAO Lixin, XU Weihong, CHEN Ziwei, YANG Bulei. Mechanical Properties and Pores Three-Parameter Distribution of Phosphogypsum-Based Extruded Special-Shaped Brick (PG-ESB) [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2240-2249. |
| [5] | SU Ying, GONG Wei, LIU Chuanbei, ZHANG Jun. Mix Ratio Design and Mechanical Properties of Phosphogypsum Lightweight Aggregate Concrete Based on Machine Learning [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1656-1665. |
| [6] | FU Zhenbo, YANG Xihao, ZHAO Yimeng, LIU Yunpeng, LI Shiji, LI Binghan, ZHAO Shuli, WANG Lei. Effect of Fly Ash Content on Drying Shrinkage and Compressive Strength of Alkali-Activated Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1717-1725. |
| [7] | REN Jun, YU Yongkun, MAO Wenting, ZHANG Yu, WANG Dafu. Performance of Mortar Based on Phosphogypsum-Based Fine Lightweight Aggregate [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1420-1427. |
| [8] | WANG Ziyan, SUN Tao, OUYANG Gaoshang. Review on Performance Regulation of Phosphogypsum-Based Excess-Sulphate Slag Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1208-1226. |
| [9] | WEN Xiaoyun, TONG Xiong, SHANG Jiangtao, CHE Yuan, CHEN Kezhen, XIE Xian, FAN Peiqiang. Progress on Application and Mechanical Properties of Phosphogypsum Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 953-969. |
| [10] | LIU Dekun, SUN Qi. Strength Formation Mechanism of Alkali-Activation Steel Solid Waste Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 1057-1068. |
| [11] | HE Jing, LYU Wei, WU Chiqiu, YU Zhengkang, LI Yisheng, SHUI Zhonghe. Interface Characteristics and Regulation of Core-Shell Structure Phosphogypsum-Based Aggregate/Portland Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 613-622. |
| [12] | GAO Yunnan, ZHANG Lingshuai, HOU Li, ZHOU Yongxiang. Solidification of Sand Washing Residue Mud byUsing Multivariant Solid Waste Cementitious Materials at 20 and 40 ℃ [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 590-601. |
| [13] | CUI Yifei, AI Weixia, ZHANG Yicong, HUANG Ting, LIU Menghua, XU Nuo, BAO Jiuwen. Interface Bonding Performance of Ultra-High Performance Alkali-Activated Concrete Matrix and Steel Fiber [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(10): 3573-3586. |
| [14] | CHEN Yanlong, ZHOU Yingying, FANG Keneng, CHEN Yiheng, CHEN Qianlin. Solidification of Phosphorus and Fluorine in Phosphogypsum and Its Effect on Properties of Mine Filling Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(10): 3791-3804. |
| [15] | LUO Guoyi, XU Guihong, REN Xu, DENG Wenbo, CHEN Ziwei, LIU Ciqi. Effect of Phosphogypsum on Carbonation and Seepage Resistance of Basalt Fiber Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(1): 231-242. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||