BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2025, Vol. 44 ›› Issue (10): 3573-3586.DOI: 10.16552/j.cnki.issn1001-1625.2025.0351
• Cement and Concrete • Previous Articles Next Articles
CUI Yifei1, AI Weixia1, ZHANG Yicong1, HUANG Ting2, LIU Menghua1, XU Nuo1, BAO Jiuwen1
Received:2025-04-07
Revised:2025-06-05
Online:2025-10-15
Published:2025-11-03
CLC Number:
CUI Yifei, AI Weixia, ZHANG Yicong, HUANG Ting, LIU Menghua, XU Nuo, BAO Jiuwen. Interface Bonding Performance of Ultra-High Performance Alkali-Activated Concrete Matrix and Steel Fiber[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(10): 3573-3586.
| [1] FREDERIKSE T, BUCHANAN M K, LAMBERT E, et al. Antarctic Ice Sheet and emission scenario controls on 21st-century extreme sea-level changes[J]. Nature Communications, 2020, 11(1): 390. [2] SHAO B, ZHU Y M, HU J, et al. Chemical engineering solution for carbon neutrality in cement industry: tailor a pathway from inevitable CO2 emission into syngas[J]. Chemical Engineering Journal, 2024, 483: 149098. [3] SHOBEIRI V, BENNETT B, XIE T Y, et al. A comprehensive assessment of the global warming potential of geopolymer concrete[J]. Journal of Cleaner Production, 2021, 297: 126669. [4] 安 亮, 谌文武, 赵天宇, 等. 固体废弃物作为路基填料在道路工程中资源化利用的研究进展(英文)[J]. 材料导报, 2024, 38(增刊2): 257-263. AN L, ZHAN W W, ZHAO T Y, et al. Utilization of solid waste materials as roadbed fillers in road construction: a review (in English) [J]. Materials Reports, 2024, 38(supplement 2): 257-263. [5] 阎培渝. 碱激发胶凝材料发展瓶颈在哪里[J]. 硅酸盐学报, 2022, 50(8): 2067-2069. YAN P Y. What is the development bottleneck of alkali-activated binder[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2067-2069 (in Chinese). [6] FAN D Q, YU R, SHUI Z H, et al. A novel approach for developing a green ultra-high performance concrete (UHPC) with advanced particles packing meso-structure[J]. Construction and Building Materials, 2020, 265: 120339. [7] WOO S K, SONG Y C, WON J P. Enhanced durability performance of face slab concrete in concrete-faced rock-filled dam using fly ash and PVA fibre[J]. KSCE Journal of Civil Engineering, 2011, 15(5): 875-882. [8] BERNAL S A, DE GUTIÉRREZ R M, PEDRAZA A L, et al. Effect of binder content on the performance of alkali-activated slag concretes[J]. Cement and Concrete Research, 2011, 41(1): 1-8. [9] LIU J, WU C Q, LI J, et al. Projectile impact resistance of fibre-reinforced geopolymer-based ultra-high performance concrete (G-UHPC)[J]. Construction and Building Materials, 2021, 290: 123189. [10] MO Z Y, GAO X J, SU A S. Mechanical performances and microstructures of metakaolin contained UHPC matrix under steam curing conditions[J]. Construction and Building Materials, 2021, 268: 121112. [11] VAN TUAN N, YE G, VAN BREUGEL K, et al. Hydration and microstructure of ultra high performance concrete incorporating rice husk ash[J]. Cement and Concrete Research, 2011, 41(11): 1104-1111. [12] ABDELLATIEF M, ELRAHMAN M A, ABADEL A A, et al. Ultra-high performance concrete versus ultra-high performance geopolymer concrete: mechanical performance, microstructure, and ecological assessment[J]. Journal of Building Engineering, 2023, 79: 107835. [13] 卢 喆, 冯振刚, 姚冬冬, 等. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(增刊1): 203-208. LU Z, FENG Z G, YAO D D, et al. Analysis of influencing factors on workability and strength of ultra-high performance concrete[J]. Materials Reports, 2020, 34(supplement 1): 203-208 (in Chinese). [14] JI X P, HAN F Y, PAN T H, et al. Decoupling the physical and chemical effects of silica fume in ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2024, 444: 137851. [15] CALDAS P H C H, DE AZEVEDO A R G, MARVILA M T. Silica fume activated by NaOH and KOH in cement mortars: rheological and mechanical study[J]. Construction and Building Materials, 2023, 400: 132623. [16] 刘剑平, 胡子扬, 刘 朋, 等. 掺硅灰和碱渣的碱激发矿渣/钢渣胶凝材料性能[J]. 沈阳工业大学学报, 2023, 45(5): 594-600. LIU J P, HU Z Y, LIU P, et al. Properties of alkali-activated furnace slag/steel slag cementitious materials mixed with silica fume and soda residue[J]. Journal of Shenyang University of Technology, 2023, 45(5): 594-600 (in Chinese). [17] WETZEL A, MIDDENDORF B. Influence of silica fume on properties of fresh and hardened ultra-high performance concrete based on alkali-activated slag[J]. Cement and Concrete Composites, 2019, 100: 53-59. [18] CAI R J, TIAN Z S, YE H L. Durability characteristics and quantification of ultra-high strength alkali-activated concrete[J]. Cement and Concrete Composites, 2022, 134: 104743. [19] HUANG L, LIU J C, CAI R J, et al. Mechanical degradation of ultra-high strength alkali-activated concrete subjected to repeated loading and elevated temperatures[J]. Cement and Concrete Composites, 2021, 121: 104083. [20] MANJUNATH R, NARASIMHAN M C, UMESH K M, et al. Studies on development of high performance, self-compacting alkali activated slag concrete mixes using industrial wastes[J]. Construction and Building Materials, 2019, 198: 133-147. [21] MENG W N, VALIPOUR M, KHAYAT K H. Optimization and performance of cost-effective ultra-high performance concrete[J]. Materials and Structures, 2016, 50(1): 29. [22] ABDALLAH S, FAN M Z, REES D W A. Analysis and modelling of mechanical anchorage of 4D/5D hooked end steel fibres[J]. Materials & Design, 2016, 112: 539-552. [23] TAI Y S, EL-TAWIL S, CHUNG T H. Performance of deformed steel fibers embedded in ultra-high performance concrete subjected to various pullout rates[J]. Cement and Concrete Research, 2016, 89: 1-13. [24] BHUTTA A, FAROOQ M, BORGES P H R, et al. Influence of fiber inclination angle on bond-slip behavior of different alkali-activated composites under dynamic and quasi-static loadings[J]. Cement and Concrete Research, 2018, 107: 236-246. [25] BHUTTA A, FAROOQ M, ZANOTTI C, et al. Pull-out behavior of different fibers in geopolymer mortars: effects of alkaline solution concentration and curing[J]. Materials and Structures, 2016, 50(1): 80. [26] ZHANG B, ZHU H, CHENG Y Z, et al. Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: a critical review[J]. Construction and Building Materials, 2022, 318: 125993. [27] LEE S W, KIM G W, OH T, et al. The microstructure and mechanical properties of cementless ultra-high-performance alkali activated concrete considering geometrical properties of steel fiber[J]. Cement and Concrete Composites, 2023, 142: 105209. [28] KIM G W, OH T, CHUN B, et al. Enhanced tensile performance of ultra-high-performance alkali-activated concrete using surface roughened steel fibers[J]. Construction and Building Materials, 2023, 409: 133867. [29] PIAO R Z, OH T, KIM G W, et al. Enhanced microstructure and mechanical properties of cementless ultra-high-performance fiber-reinforced alkali-activated concrete with silicon dioxide nanoparticles[J]. Construction and Building Materials, 2023, 398: 132514. [30] JIN W, HAN C P. Mechanical properties of sisal fiber-reinforced fly ash cement mortar activated by sodium sulfate[J]. Construction and Building Materials, 2024, 445: 137925. [31] LI Q, WANG J B, ZHOU Z H, et al. Effect of BaCl2 on the hydration properties of ultrahigh performance geopolymer concrete[J]. Construction and Building Materials, 2023, 403: 133074. [32] PI Z Y, XIAO H G, LI H. Influence of interfacial microstructure on pullout behavior and failure mechanism of steel fibers embedded in cement-based materials[J]. Construction and Building Materials, 2021, 304: 124688. [33] LUO L, YAO W, LIANG G W, et al. Workability, autogenous shrinkage and microstructure of alkali-activated slag/fly ash slurries: effect of precursor composition and sodium silicate modulus[J]. Journal of Building Engineering, 2023, 73: 106712. [34] XU R S, KONG F H, YANG R H, et al. Influences of silicate modulus and alkali content on macroscopic properties and microstructure of alkali-activated blast furnace slag-copper slag[J]. Construction and Building Materials, 2024, 442: 137622. [35] 刘 刚, 丁明巍, 刘金军, 等. 碱激发矿粉-粉煤灰-偏高岭土地聚物水化行为和力学性能[J]. 硅酸盐通报, 2023, 42(6): 2106-2114. LIU G, DING M W, LIU J J, et al. Hydration behavior and mechanical properties of alkaline excited slag-fly ash-metakaolin geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2106-2114 (in Chinese). [36] DING Y, DAI J G, SHI C J. Mechanical properties of alkali-activated concrete: a state-of-the-art review[J]. Construction and Building Materials, 2016, 127: 68-79. [37] 刘 泽, 周 瑜, 孔凡龙, 等. 碱激发矿渣基地质聚合物微观结构与性能研究[J]. 硅酸盐通报, 2017, 36(6): 1830-1834. LIU Z, ZHOU Y, KONG F L, et al. Microstructure and properties of alkali-activated blast furnace slag based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6): 1830-1834 (in Chinese). [38] 李 平, 马倩敏, 谭绍恩, 等. 活化剂种类及含量对碱激发矿渣/红砂岩胶凝材料的影响[J]. 材料导报, 2024, 38(增刊2): 270-274. LI P, MA Q M, TAN S E, et al. Effect of activator type and content on alkali-activated slag/red sandstone cementitious materials[J]. Materials Reports, 2024, 38(supplement 2): 270-274 (in Chinese). [39] BAI W F, YE D Q, YE S, et al. Study on mechanical properties and damage mechanism of alkali-activated slag concrete[J]. Journal of Building Engineering, 2024, 96: 110357. [40] ZHANG X K, WANG W L, ZHANG Y N, et al. Research on hydration characteristics of OSR-GGBFS-FA alkali-activated materials[J]. Construction and Building Materials, 2024, 411: 134321. [41] CHUN B, YOO D Y, BANTHIA N. Achieving slip-hardening behavior of sanded straight steel fibers in ultra-high-performance concrete[J]. Cement and Concrete Composites, 2020, 113: 103669. [42] ABDALLAH S, FAN M Z, REES D W A. Bonding mechanisms and strength of steel fiber-reinforced cementitious composites: overview[J]. Journal of Materials in Civil Engineering, 2018, 30(3): 04018001. [43] KRAHL P A, GIDRÃO G M S, NETO R B, et al. Effect of curing age on pullout behavior of aligned and inclined steel fibers embedded in UHPFRC[J]. Construction and Building Materials, 2021, 266: 121188. [44] DAI X D, AYDN S, YARDMC M Y, et al. Rheology and microstructure of alkali-activated slag cements produced with silica fume activator[J]. Cement and Concrete Composites, 2022, 125: 104303. [45] SHEN J L, LI Y, LIN H, et al. The research on the mechanical properties, microstructure, environmental impacts of environmentally friendly alkali-activated ultra high performance concrete (AAUHPC) matrix with varied design parameters[J]. Journal of Building Engineering, 2024, 94: 110037. [46] ZHANG R, HE H Y, SONG Y H, et al. Influence of mix proportioning parameters and curing regimes on the properties of ultra-high strength alkali-activated concrete[J]. Construction and Building Materials, 2023, 393: 132139. [47] KIM G W, OH T, LEE S K, et al. Hybrid reinforcement of steel-polyethylene fibers in cementless ultra-high performance alkali-activated concrete with various silica sand dosages[J]. Construction and Building Materials, 2023, 394: 132213. [48] DENG X F, LI M G, WANG Y F, et al. Impact of ettringite seeding on hydration, strength and shrinkage of Na2SO4 activated slag[J]. Composites Part B: Engineering, 2024, 276: 111374. [49] CHAN Y W, CHU S H. Effect of silica fume on steel fiber bond characteristics in reactive powder concrete[J]. Cement and Concrete Research, 2004, 34(7): 1167-1172. [50] WU Z M, SHI C J, KHAYAT K H. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC)[J]. Cement and Concrete Composites, 2016, 71: 97-109. [51] 马倩敏, 黄丽萍, 牛治亮, 等. 碱激发剂浓度及模数对碱矿渣胶凝材料抗压性能及水化产物的影响研究[J]. 硅酸盐通报, 2018, 37(6): 2002-2007. MA Q M, HUANG L P, NIU Z L, et al. Effect of alkali concentration and modulus of alkaline activator on the compressive properties and hydration products of alkali activated slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(6): 2002-2007 (in Chinese). [52] ZAINAL F F, SULOTOHA N, DAUD Y M, et al. The effect of sodium hydroxide (NaOH) solution concentration on properties of geopolymer paste[J]. IOP Conference Series: Materials Science and Engineering, 2020, 957(1): 012058. [53] YAO Y B, LIU D M, CHE Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010, 89(7): 1371-1380. [54] ZHAO X H, LIU C Y, WANG L, et al. Physical and mechanical properties and micro characteristics of fly ash-based geopolymers incorporating soda residue[J]. Cement and Concrete Composites, 2019, 98: 125-136. [55] LI J, MAILHIOT S, SREENIVASAN H, et al. Curing process and pore structure of metakaolin-based geopolymers: liquid-state 1H NMR investigation[J]. Cement and Concrete Research, 2021, 143: 106394. [56] 郭 旗, 薛善彬, 荆蜂杰, 等. 新拌修补砂浆与基体水分交换行为及其对复合体性能的影响[J]. 硅酸盐学报, 2023, 51(5): 1115-1125. GUO Q, XUE S B, JING F J, et al. Moisture exchange between fresh repair mortar and old mortar and its effect on performance of composite[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1115-1125 (in Chinese). [57] AYDN S, BARADAN B. Effect of activator type and content on properties of alkali-activated slag mortars[J]. Composites Part B: Engineering, 2014, 57: 166-172. [58] CHUN B, KIM S, YOO D Y. Benefits of chemically treated steel fibers on enhancing the interfacial bond strength from ultra-high-performance concrete[J]. Construction and Building Materials, 2021, 294: 123519. [59] SONG P P, LIU Y Z, KONG L J, et al. Research on design and optimization for compositions of ultra-high-performance geopolymer concrete[J]. Journal of Building Engineering, 2025, 100: 111750. [60] YOO D Y, PARK J J, KIM S W. Fiber pullout behavior of HPFRCC: effects of matrix strength and fiber type[J]. Composite Structures, 2017, 174: 263-276. [61] 袁 明, 吴晓娟, 颜东煌, 等. 加载速率对钢纤维与超高性能混凝土黏结性能的影响[J]. 长安大学学报(自然科学版), 2022, 42(5): 62-72. YUAN M, WU X J, YAN D H, et al. Effect of loading rate on bond properties of steel fiber and ultra-high performance concrete[J]. Journal of Chang’an University (Natural Science Edition), 2022, 42(5): 62-72 (in Chinese). [62] 龚明子, 潘阿馨, 张子龙, 等. 超高性能纤维增强混凝土中钢纤维拔出行为研究[J]. 硅酸盐通报, 2023, 42(8): 2764-2772. GONG M Z, PAN A X, ZHANG Z L, et al. Pull-out behaviour of steel fiber in ultra-high performance fiber reinforced concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 2764-2772 (in Chinese). [63] QI J N, WU Z M, MA Z J, et al. Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles[J]. Construction and Building Materials, 2018, 191: 764-774. [64] 林晓溁. 掺花岗岩石粉UHPC单根钢纤维拉拔性能研究[D]. 福州: 福州大学, 2017. LIN X Y. Study on drawing performance of UHPC single steel fiber mixed with granite stone powder[D]. Fuzhou: Fuzhou University, 2017 (in Chinese). [65] 袁 明, 朱海乐, 颜东煌, 等. 钢纤维埋深与类型影响钢纤维-UHPC基体界面粘结性能的试验研究[J]. 材料导报, 2023, 37(16): 135-143. YUAN M, ZHU H L, YAN D H, et al. Experimental study on the effect of steel fiber embedment depth and type on the interfacial bonding properties of steel fiber-UHPC matrix[J]. Materials Reports, 2023, 37(16): 135-143 (in Chinese). [66] SHAIKH F U A. Pullout behavior of hook end steel fibers in geopolymers[J]. Journal of Materials in Civil Engineering, 2019, 31(6): 04019068. [67] WETZEL A, GBEL D, SCHLEITING M, et al. Bonding behaviour of steel fibres in UHPFRC based on alkali-activated slag[J]. Materials, 2022, 15(5): 1930. |
| [1] | JIANG Haoyang, HU Zhide, ZHAO Sixie, ZHANG Hansong, XU Chunxia. Effect of Ambient Temperature on Hydration Temperature Rise of Magnesium Phosphate Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3147-3155. |
| [2] | YE Jisheng, MA Ying, LI Yuwei, TAI An, WANG Jiahao. Effect of Early CO2 Curing on Properties of Steel Slag Solid Waste Cementitious Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(9): 3326-3336. |
| [3] | LI Yisheng, LYU Wei, WU Chiqiu, YU Zhengkang, HE Jing, SHUI Zhonghe. Hardened Body Preparation and Performance Adjustment of High Content Phosphogypsum Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2944-2954. |
| [4] | YANG Kuo, WANG Li, LI Zhijian. Collaborative Optimization of Strength and Accuracy of Binder Jetting 3D Printing Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2741-2751. |
| [5] | ZHAO Yu, WANG Zhe, ZHU Lingli. Effect of Fiber on Rheological and Mechanical Properties of 3DP-UHPC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2823-2838. |
| [6] | LI Jie, LI Shunkai, ZHAO Huan, ZENG Qinwei. Effect of Nano-TiO2 Modified Foaming Agent on Properties of Foam Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2839-2848. |
| [7] | HU Jianlin, LI Zhilin, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Mechanical Properties of Quicklime-Activated Ground Blast Furnace Slag-Fly Ash Geopolymer-Stabilized Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2912-2923. |
| [8] | HUANG Congbin, TAI Hongsheng, LUO Jugang. Effect of Pre-Wetted Biochar on Autogenous Shrinkage and Compressive Strength of Ultra-High Performance Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2458-2464. |
| [9] | WU Qingyong, ZHAO Shuang, HAN Bin, WANG Wei, QIAO Min, DU Shuang, CHEN Junsong. Preparation of Aluminum Silicon Composite Microcapsules and Application in Cement-Based Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2388-2395. |
| [10] | ZHANG Pu, QI Dongyou, WANG Xiaoke, CHEN Heyuan, HE Changyu, ZHANG Wei, XIE Yabin, ZHANG Dong. Mechanical and Microscopic Properties of Ferroaluminate Cement Concrete under Action of Seawater Dry-Wet Cycle [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2429-2436. |
| [11] | LI Zhiquan, ZHANG Guangtian, ZHANG Yanjia, JIA Biao, LIU Dongji, ZHANG Biao. Effect of Alkali Residue Content on Properties of Solid Waste-Based Cementitious Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2597-2607. |
| [12] | FANG Yanfeng, MA Xue, DING Xiangqun, TONG Yu. Effect of Nano C-A-S-H and DEIPA Composite on Early Hydration of Cement at Different Temperatures [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 1996-2004. |
| [13] | YU Hailong, BAI Wending, LIU Meifang, HU Liqun, BAO Yingbo. Effect of Basalt Fiber on Mechanical Properties of Cement Stabilized Macadam with Suspended Dense Structure [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2343-2352. |
| [14] | MA Lingyong, LIU Yandong, LIU Yang, JIANG Wei, LI Qing, DU Bin, FU Enmin, LI Dong. Effects of Water Temperature and Hydrogen Peroxide on Properties and Pore Structure of Foamed Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 1979-1987. |
| [15] | GAO Yonghong, LI Jiahao, JIN Qingping, PENG Mengmi. Mechanical Properties and Chloride Ion Penetration Resistance of BFHSM after High Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2016-2025. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||