[1] TRIPATHY S K, DASU J, MURTHY Y R, et al. Utilisation perspective on water quenched and air-cooled blast furnace slags[J]. Journal of Cleaner Production, 2020, 262: 121354. [2] ZHU J W, CUI H Z, CUI L Z, et al. Mutual activation mechanism of cement-GGBS-steel slag ternary system excited by sodium sulfate[J]. Buildings, 2024, 14(3): 631. [3] PACHECO-TORGAL F, CASTRO-GOMES J, JALALI S. Alkali-activated binders: a review part 1. historical background, terminology, reaction mechanisms and hydration products[J]. Construction and Building Materials, 2008, 22(7): 1305-1314. [4] AYDıN1 S, BARADAN B. Mechanical and microstructural properties of heat cured alkali-activated slag mortars[J]. Materials & Design, 2012, 35: 374-383. [5] JIA Z J, YANG Y Y, YANG L Y, et al. Hydration products, internal relative humidity and drying shrinkage of alkali activated slag mortar with expansion agents[J]. Construction and Building Materials, 2018, 158: 198-207. [6] KHERADMAND M, ABDOLLAHNEJAD Z, PACHECO-TORGAL F. Shrinkage performance of fly ash alkali-activated cement based binder mortars[J]. KSCE Journal of Civil Engineering, 2018, 22(5): 1854-1864. [7] YE H L, RADLIŃSKA A. Shrinkage mechanisms of alkali-activated slag[J]. Cement and Concrete Research, 2016, 88: 126-135. [8] BALLEKERE KUMARAPPA D, PEETHAMPARAN S, NGAMI M. Autogenous shrinkage of alkali activated slag mortars: basic mechanisms and mitigation methods[J]. Cement and Concrete Research, 2018, 109: 1-9. [9] 李 爽, 刘和鑫, 杨 永, 等. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机理研究[J]. 材料导报, 2021, 35(4): 4088-4091. LI S, LIU H X, YANG Y, et al. Mechanisms of drying shrinkage for alkali-activated slag/metakaolin composite materials[J]. Materials Reports, 2021, 35(4): 4088-4091 (in Chinese). [10] 胡张莉. 碱激发矿渣粉煤灰水泥早期水化及收缩特性研究[D]. 长沙: 湖南大学, 2013: 48-72. HU Z L. Study on early hydration and shrinkage characteristics of alkali-activated slag fly ash cement[D]. Changsha: Hunan University, 2013: 48-72 (in Chinese). [11] FANG S, LAM E S S, LI B, et al. Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag[J]. Construction and Building Materials, 2020, 249: 118799. [12] 龚建清, 董雅竹, 张 浩, 等. 含玻璃砂的高性能碱激发矿渣砂浆性能研究[J]. 硅酸盐通报, 2022, 41(12): 4361-4368. GONG J Q, DONG Y Z, ZHANG H, et al. Performance of glass sand-containing high-performance alkali-activated slag mortars[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(12): 4361-4368 (in Chinese). [13] 范小春, 杨东升, 张 宇, 等. 外加剂对碱激发胶凝材料干燥收缩性能的影响[J]. 硅酸盐通报, 2024, 43(8): 2788-2796. FAN X C, YANG D S, ZHANG Y, et al. Influences of additives on alkali-activated cementitious materials drying shrinkage performance[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(8): 2788-2796 (in Chinese). [14] 李 军, 单继雄, 胡艳民, 等. 氧化钙膨胀剂减少碱激发矿渣混凝土自收缩的研究[J]. 混凝土, 2023(1): 78-81. LI J, SHAN J X, HU Y M, et al. Study of reducing autogenous shrinkage of alkali-activated slag concrete with CaO expanding agent[J]. Concrete, 2023(1): 78-81 (in Chinese). [15] LEE N K, JANG J G, LEE H K. Shrinkage characteristics of alkali-activated fly ash/slag paste and mortar at early ages[J]. Cement and Concrete Composites, 2014, 53: 239-248. [16] GAO X, YU Q L, BROUWERS H J H. Assessing the porosity and shrinkage of alkali activated slag-fly ash composites designed applying a packing model[J]. Construction and Building Materials, 2016, 119: 175-184. [17] YAO X, YANG T, ZHANG Z H. Compressive strength development and shrinkage of alkali-activated fly ash-slag blends associated with efflorescence[J]. Materials and Structures, 2016, 49(7): 2907-2918. [18] KOVALCHUK, FERNÁNDEZ-JIMÉNEZ, PALOMO. Relationship between mechanical strength gains and initial ash chemistry[J]. Materiales de Construccion, 2008, 58(291): 35. [19] FERNÁNDEZ-JIMÉNEZ A, PALOMO A. Composition and microstructure of alkali activated fly ash binder: effect of the activator[J]. Cement and Concrete Research, 2005, 35(10): 1984-1992. [20] YE H L, CARTWRIGHT C, RAJABIPOUR F, et al. Understanding the drying shrinkage performance of alkali-activated slag mortars[J]. Cement and Concrete Composites, 2017, 76: 13-24. [21] CHI M, HUANG R. Binding mechanism and properties of alkali-activated fly ash/slag mortars[J]. Construction and Building Materials, 2013, 40: 291-298. [22] PROVIS J L, MYERS R J, WHITE C E, et al. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders[J]. Cement and Concrete Research, 2012, 42(6): 855-864. [23] 杨长辉, 刘先锋, 刘 建. 碱矿渣水泥及混凝土化学外加剂的研究进展[J]. 混凝土, 2006(4): 17-18+28. YANG C H, LIU X F, LIU J. The research progress of chemical admixture for alkali-activated slag cement and concrete[J]. Concrete, 2006(4): 17-18+28 (in Chinese). [24] 姜保晓, 徐衍昌, 左俊卿, 等. 粉煤灰对不同胶凝体系干缩影响[J]. 粉煤灰综合利用, 2012, 26(2): 18-21. JIANG B X, XU Y C, ZUO J Q, et al. Influence of fly ash on shrinkage performance of different cementitious system[J]. Fly Ash Comprehensive Utilization, 2012, 26(2): 18-21 (in Chinese). [25] CHITHIRAPUTHIRAN S, NEITHALATH N. Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends[J]. Construction and Building Materials, 2013, 45: 233-242. [26] SINGH B, RAHMAN M R, PASWAN R, et al. Effect of activator concentration on the strength, ITZ and drying shrinkage of fly ash/slag geopolymer concrete[J]. Construction and Building Materials, 2016, 118: 171-179. [27] FANG G H, BAHRAMI H, ZHANG M Z. Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h[J]. Construction and Building Materials, 2018, 171: 377-387. [28] 韩方晖, 刘娟红, 阎培渝. 温度对水泥-矿渣复合胶凝材料水化的影响[J]. 硅酸盐学报, 2016, 44(8): 1071-1080. HAN F H, LIU J H, YAN P Y. Effect of temperature on hydration of composite binder containing slag[J]. Journal of the Chinese Ceramic Society, 2016, 44(8): 1071-1080 (in Chinese). [29] LEE N K, LEE H K. Reactivity and reaction products of alkali-activated, fly ash/slag paste[J]. Construction and Building Materials, 2015, 81: 303-312. [30] GRUSKOVNJAK A, LOTHENBACH B, HOLZER L, et al. Hydration of alkali-activated slag: comparison with ordinary Portland cement[J]. Advances in Cement Research, 2006, 18(3): 119-128. [31] BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag: part I: effect of MgO[J]. Cement and Concrete Research, 2011, 41(9): 955-963. [32] ISMAIL I, BERNAL S A, PROVIS J L, et al. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash[J]. Cement and Concrete Composites, 2014, 45: 125-135. [33] 陈友治, 钟浩轩, 殷伟淞, 等. 钙硅比对水化硅酸钙结构、Zeta电势及减水剂吸附性能的影响分析[J]. 硅酸盐通报, 2020, 39(6): 1798-1804. CHEN Y Z, ZHONG H X, YIN W S, et al. Effect of calcium-silicon ratio of calcium silicate hydrate on its structure, Zeta potential and adsorption capacity of superplasticizer[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1798-1804 (in Chinese). [34] CHAUBE R, KISHI T, MAEKAWA K. Modelling of concrete performance: hydration, microstructure and mass transport[M]. London: Routledge, 2005. [35] MAEKAWA K, ISHIDA T. Modeling of structural performances under coupled environmental and weather actions[J]. Materials and Structures, 2002, 35(10): 591-602. |