[1] 庄培镇, 马玉玮, 罗甜恬, 等. 碱激发矿渣/粉煤灰净浆/砂浆力学性能研究[J]. 硅酸盐通报, 2022, 41(10): 3578-3589. ZHUANG P Z, MA Y W, LUO T T, et al. Mechanical properties of alkali-activated slag/fly ash paste/mortar[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3578-3589 (in Chinese). [2] FU Q, BU M X, ZHANG Z R, et al. Hydration characteristics and microstructure of alkali-activated slag concrete: a review[J]. Engineering, 2023, 20: 162-179. [3] 张文艳, 林华夏, 王 帅, 等. 减缩剂对碱激发煤矸石-矿渣胶凝材料性能的影响[J]. 硅酸盐通报, 2022, 41(2): 526-535. ZHANG W Y, LIN H X, WANG S, et al. Effect of shrinkage reducing agent on properties of alkali-activated coal gangue-slag cementitious material[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 526-535 (in Chinese). [4] XIAO R, JIANG X, ZHANG M M, et al. Analytical investigation of phase assemblages of alkali-activated materials in CaO-SiO2-Al2O3 systems: the management of reaction products and designing of precursors[J]. Materials & Design, 2020, 194: 108975. [5] 安 赛, 王宝民, 陈文秀, 等. 电石渣激发矿渣-粉煤灰复合胶凝材料的作用机制[J]. 硅酸盐通报, 2023, 42(4): 1333-1343. AN S, WANG B M, CHEN W X, et al. Interaction mechanism of carbide slag activating slag-fly ash composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1333-1343 (in Chinese). [6] 李蒙蒙, 舒 鑫, 韩方玉, 等. 聚羧酸减水剂在碱激发矿渣胶凝材料中的研究进展[J]. 硅酸盐通报, 2023, 42(10): 3432-3438. LI M M, SHU X, HAN F Y, et al. Research progress of polycarboxylate superplasticizer in alkali-activated slag cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3432-3438 (in Chinese). [7] WIRANARONGKORN K, PHAJAM P, IM-ORB K, et al. Assessment and analysis of multi-biomass fuels for sustainable electricity generation[J]. Renewable Energy, 2021, 180: 1405-1418. [8] HUANG H, GAO Y, CHEN H N, et al. Biomass briquette fuel, boiler types and pollutant emissions of industrial biomass boiler: a review[J]. Particuology, 2023, 77: 79-90. [9] LI S Y, WU Y J, DAO M U, et al. Spotlighting of the role of catalysis for biomass conversion to green fuels towards a sustainable environment: latest innovation avenues, insights, challenges, and future perspectives[J]. Chemosphere, 2023, 318: 137954. [10] BIN HAIDER J, HAQUE M I, HOQUE M, et al. Efficient extraction of silica from openly burned rice husk ash as adsorbent for dye removal[J]. Journal of Cleaner Production, 2022, 380: 135121. [11] KANG S H, HONG S G, MOON J. The use of rice husk ash as reactive filler in ultra-high performance concrete[J]. Cement and Concrete Research, 2019, 115: 389-400. [12] MINNU S N, BAHURUDEEN A, ATHIRA G. Comparison of sugarcane bagasse ash with fly ash and slag: an approach towards industrial acceptance of sugar industry waste in cleaner production of cement[J]. Journal of Cleaner Production, 2021, 285: 124836. [13] ORIOLA K O, RAHEEM A A, OGUNDELE A B. Investigation of compressive strength and thermal properties of corn cob ash cement concrete[J]. Materials Today: Proceedings, 2023, 86: 128-133. [14] OLUREMI J R, RAHEEM A A, BALOGUN R O, et al. Early strength development assessment of concrete produced from cement replaced with nano silica activated corn cob ash[J]. Materials Today: Proceedings, 2023, 86: 36-40. [15] ABU BAKAR R, YAHYA R, GAN S N. Production of high purity amorphous silica from rice husk[J]. Procedia Chemistry, 2016, 19: 189-195. [16] BIE R S, SONG X F, LIU Q Q, et al. Studies on effects of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement[J]. Cement and Concrete Composites, 2015, 55: 162-168. [17] BARAN Y, GÖKÇE H, DURMAZ M. Physical and mechanical properties of cement containing regional hazelnut shell ash wastes[J]. Journal of Cleaner Production, 2020, 259: 120965. [18] NWOFOR T C, SULE S. Stability of groundnut shell ash (GSA)/ordinary Portland cement (OPC) concrete in Nigeria[J]. Advances in Applied Science Research, 2012, 3(4): 2283-2287. [19] HUO Y L, HUANG J G, LU D, et al. Durability of alkali-activated slag concrete incorporating silica fume and rice husk ash[J]. Journal of Building Engineering, 2023, 78: 107637. [20] MORAES J C B, TASHIMA M M, AKASAKI J L, et al. Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS)[J]. Construction and Building Materials, 2017, 144: 214-224. [21] SALIH M A, FARZADNIA N, ALI A A A, et al. Development of high strength alkali activated binder using palm oil fuel ash and GGBS at ambient temperature[J]. Construction and Building Materials, 2015, 93: 289-300. [22] LIMA F S, GOMES T C F, DE MORAES J C B. Novel one-part alkali-activated binder produced with coffee husk ash[J]. Materials Letters, 2022, 313: 131733. [23] ALONSO M M, GASCÓ C, MORALES M M, et al. Olive biomass ash as an alternative activator in geopolymer formation: a study of strength, radiology and leaching behaviour[J]. Cement and Concrete Composites, 2019, 104: 103384. [24] SORIANO L, FONT A, TASHIMA M M, et al. Almond-shell biomass ash (ABA): a greener alternative to the use of commercial alkaline reagents in alkali-activated cement[J]. Construction and Building Materials, 2021, 290: 123251. [25] 王 侃, 王子芳, 高 明, 等. 不同pH条件下生物质灰渣中K+释放动力学研究[J]. 中国生态农业学报, 2014, 22(2): 171-176. WANG K, WANG Z F, GAO M, et al. Analysis of K+ release kinetics of biomass ash with different pH[J]. Chinese Journal of Eco-Agriculture, 2014, 22(2): 171-176 (in Chinese). [26] 刘鑫宇, 贾 青, 王正君. 生物质灰作为辅助胶凝材料的研究现状[J]. 广东建材, 2024, 40(9): 181-184. LIU X Y, JIA Q, WANG Z J. Current status of research on biomass ash as an auxiliary cementitious material[J]. Guangdong Building Materials, 2024, 40(9): 181-184 (in Chinese). [27] LEE N K, LEE H K. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature[J]. Construction and Building Materials, 2013, 47: 1201-1209. [28] 谢建和, 李丽明, 黄俊健, 等. 缓凝剂对碱激发材料性能影响的研究进展[J]. 建筑科学与工程学报, 2023, 40(5): 20-31. XIE J H, LI L M, HUANG J J, et al. State-of-the-art review on influence of retarders on performance of alkali-activated materials[J]. Journal of Architecture and Civil Engineering, 2023, 40(5): 20-31 (in Chinese). [29] FANG G H, BAHRAMI H, ZHANG M Z. Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h[J]. Construction and Building Materials, 2018, 171: 377-387. [30] LIU J, FARZADNIA N, KHAYAT K H, et al. Effects of SAP characteristics on internal curing of UHPC matrix[J]. Construction and Building Materials, 2021, 280: 122530. [31] LV Y, YE G, DE SCHUTTER G. Investigation on the potential utilization of zeolite as an internal curing agent for autogenous shrinkage mitigation and the effect of modification[J]. Construction and Building Materials, 2019, 198: 669-676. [32] CHEN W W, LI B, WANG J, et al. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste[J]. Cement and Concrete Research, 2021, 141: 106322. [33] QU B, LIU T L, DUAN L, et al. The effect of sodium citrate on NaOH-activated BFS cement: hydration, mechanical property, and micro/nanostructure[J]. Cement and Concrete Composites, 2022, 133: 104703. |