[1] 刘 帅, 徐玉飞, 詹进生, 等. 国内流态固化土的研究与应用进展[J]. 新型建筑材料, 2022, 49(8): 167-171. LIU S, XU Y F, ZHAN J S, et al. Research and application progress of fluidized solidified soil in China[J]. New Building Materials, 2022, 49(8): 167-171 (in Chinese). [2] 杨君健, 兰明章, 王剑锋, 等. 多元固废基胶凝材料水化性能研究[J]. 新型建筑材料, 2022, 49(10): 107-113. YANG J J, LAN M Z, WANG J F, et al. Research on hydration properties of multiple solid waste-based cementitious materials[J]. New Building Materials, 2022, 49(10): 107-113 (in Chinese). [3] SONG D B, CHEN W B, YIN Z Y, et al. Recycling dredged mud slurry using vacuum-solidification combined method with sustainable alkali-activated binder[J]. Geotextiles and Geomembranes, 2023, 51(5): 104-119. [4] 张国防, 王 博, 张海旭, 等. OPC-GBFS-NS体系土体硬化剂固化土壤的作用效果研究[J]. 建筑材料学报, 2022, 25(1): 61-67. ZHANG G F, WANG B, ZHANG H X, et al. Effects of OPC-GBFS-NS system based soil stabilizer on soil stabilization[J]. Journal of Building Materials, 2022, 25(1): 61-67 (in Chinese). [5] SARGENT P, HUGHES P N, ROUAINIA M. A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing[J]. Soils and Foundations, 2016, 56(6): 1021-1034. [6] LINDH P, LEMENKOVA P. Effects of water: binder ratio on strength and seismic behavior of stabilized soil from Kongshavn, port of Oslo[J]. Sustainability, 2023, 15(15): 12016. [7] YE G B, SHU H, ZHANG Z, et al. Solidification and field assessment of soft soil stabilized by a waste-based binder using deep mixing method[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(6): 5061-5074. [8] JONGPRADIST P, JUMLONGRACH N, YOUWAI S, et al. Influence of fly ash on unconfined compressive strength of cement-admixed clay at high water content[J]. Journal of Materials in Civil Engineering, 2010, 22(1): 49-58. [9] LI J J, CAO S, YILMAZ E. Characterization of macro mechanical properties and microstructures of cement-based composites prepared from fly ash, gypsum and steel slag[J]. Minerals, 2022, 12(1): 6. [10] JIA Y, HUA S D, QIAN L Y, et al. Development of steel slag-based solidification/stabilization materials for high moisture content soil[J]. Journal of Renewable Materials, 2022, 10(3): 735-749. [11] WANG M Q, QIAN B B, JIANG J, et al. The reaction between Ca2+ from steel slag and granulated blast-furnace slag system: a unique perspective[J]. Chemical Papers, 2020, 74(12): 4401-4410. [12] ZHA F S, QIAO B R, KANG B, et al. Engineering properties of expansive soil stabilized by physically amended titanium gypsum[J]. Construction and Building Materials, 2021, 303: 124456. [13] SHEN J S, XU Y D, CHEN J, et al. Study on the stabilization of a new type of waste solidifying agent for soft soil[J]. Materials, 2019, 12(5): 826. [14] 舒本安, 陈伟忠, 任彦飞, 等. 固废基软土固化材料的研制及在浅层就地固化工程中的应用研究[J]. 新型建筑材料, 2022, 49(11): 121-126. SHU B A, CHEN W Z, REN Y F, et al. Research on development of solid waste soft soil based solidification material and its application in shallow in situ solidification engineering[J]. New Building Materials, 2022, 49(11): 121-126 (in Chinese). [15] CUI X, NI W. Hydration behavior of cementitious materials with all solid waste based of steel slag and blast furnace slag[J]. Revista de la Facultad de Ingeniería, 2016, 31(7): 172-81. [16] XU C W, NI W, LI K Q, et al. Activation mechanisms of three types of industrial by-product gypsums on steel slag-granulated blast furnace slag-based binders[J]. Construction and Building Materials, 2021, 288: 123111. [17] BLOTEVOGEL S, EHRENBERG A, STEGER L, et al. Ability of the R3 test to evaluate differences in early age reactivity of 16 industrial ground granulated blast furnace slags (GGBS)[J]. Cement and Concrete Research, 2020, 130: 105998. [18] PAN S Y, ADHIKARI R, CHEN Y H, et al. Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation[J]. Journal of Cleaner Production, 2016, 137: 617-631. [19] STEL'MAKH S A, SHCHERBAN' E M, BESKOPYLNY A N, et al. Prediction of mechanical properties of highly functional lightweight fiber-reinforced concrete based on deep neural network and ensemble regression trees methods[J]. Materials, 2022, 15(19): 6740. [20] AMAR M, BENZERZOUR M, ZENTAR R, et al. Prediction of the compressive strength of waste-based concretes using artificial neural network[J]. Materials, 2022, 15(20): 7045. [21] NUJID M M, MICHAEL M E, THOLIBON D A. Failure assessment of strength and bearing capacity on marine stabilized subgrade soil[J]. Journal of Failure Analysis and Prevention, 2021, 21(6): 1925-1942. [22] 王 硕, 唐正光, 华 伦. 基于BP神经网络的固化红土抗压强度预测[J]. 交通科学与工程, 2024, 40(2): 108-115. WANG S, TANG Z G, HUA L. Compressive strength prediction of solidified laterite based on BP neural network[J]. Journal of Transport Science and Engineering, 2024, 40(2): 108-115 (in Chinese). [23] 张 辉, 杨 黎, 陈永辉, 等. 连云港海相固化软土抗拉强度特性及预测方法[J]. 水运工程, 2023(6): 192-198+225. ZHANG H, YANG L, CHEN Y H, et al. Tensile strength characteristics and prediction method of solidified marine soft soil in Lianyungang[J]. Port & Waterway Engineering, 2023(6): 192-198+225 (in Chinese). [24] 张秉夏, 杨 林. 基于正交试验和神经网络的复合固结土强度预测[J]. 森林工程, 2013, 29(2): 82-85. ZHANG B X, YANG L. Strength prediction of compound stabilized soil based on orthogonal experiment and neural network[J]. Forest Engineering, 2013, 29(2): 82-85 (in Chinese). [25] LI J J, YILMAZ E, CAO S. Influence of industrial solid waste as filling material on mechanical and microstructural characteristics of cementitious backfills[J]. Construction and Building Materials, 2021, 299: 124288. [26] WU L Y, WANG Q, GE D D, et al. Study on the mechanical characteristics of urban sludge solidified by industrial waste[J]. KSCE Journal of Civil Engineering, 2023, 27(7): 2803-2812. [27] 孙家瑛, 沈建生. 新型固化剂GSC固化软土的力学性能试验研究[J]. 土木建筑与环境工程, 2013, 35(1): 20-25. SUN J Y, SHEN J S. Experimental investigation of stabilized soft soil by new GSC[J]. Journal of Civil, Architectural & Environmental Engineering, 2013, 35(1): 20-25 (in Chinese). [28] 李雪和, 杨耀辉, 韦金城, 等. 矿渣-钢渣-脱硫石膏-水泥稳定粉土的强度及固化机理[J]. 中南大学学报(自然科学版), 2023, 54(6): 2382-2390. LI X H, YANG Y H, WEI J C, et al. Strength and solidified mechanism of slag-steel slag-desulfurization gypsum-cement stabilized silt[J]. Journal of Central South University (Science and Technology), 2023, 54(6): 2382-2390 (in Chinese). [29] 余 静, 俞 峰, 陈 鑫, 等. 工业固废-水泥协同固化工程弃土配比优选[J]. 科学技术与工程, 2024, 24(5): 2168-2176. YU J, YU F, CHEN X, et al. Optimization of mixture ration of industrial solid wastes and cement synergistic solidification engineering waste soil[J]. Science Technology and Engineering, 2024, 24(5): 2168-2176 (in Chinese). [30] 张 宁, 孙彦兵, 马川义, 等. 固废基土壤固化剂对固化土延迟力学性能的影响[J]. 市政技术, 2023, 41(12): 262-268. ZHANG N, SUN Y B, MA C Y, et al. Effect of solid waste based soil solidification agent on delayed mechanical properties of stabilized soil[J]. Journal of Municipal Technology, 2023, 41(12): 262-268 (in Chinese). [31] 王应富, 张树光, 黄 啸, 等. 磷石膏-钢渣-矿渣固化低液限粉质黏土力学性能及耐久性能研究[J]. 土木工程学报, 2023, 56(增刊1): 12-23. WANG Y F, ZHANG S G, HUANG X, et al. Mechanical and durability properties of gypsum-steel slag-slag stabilized low liquid limit silty clay[J]. China Civil Engineering Journal, 2023, 56(supplement 1): 12-23 (in Chinese). [32] 沈建生, 徐亦冬, 方建柯. 新型废渣软土固化剂的试验研究[J]. 硅酸盐通报, 2018, 37(10): 3332-3337. SHEN J S, XU Y D, FANG J K. Experimental research on a new type of soft soil hardener mixed with waste residue[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(10): 3332-3337 (in Chinese). [33] CONSOLI N C, DA SILVA LOPES L Jr, PRIETTO P D M, et al. Variables controlling stiffness and strength of lime-stabilized soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(6): 628-632. [34] 黄 虎, 王安辉, 张艳芳, 等. 多源固废基固化剂对不同含水率淤泥固化效果研究[J]. 新型建筑材料, 2023, 50(10): 111-116+120. HUANG H, WANG A H, ZHANG Y F, et al. Study on the effect of multi-source solid waste-based curing agent on curing sludge with different water content[J]. New Building Materials, 2023, 50(10): 111-116+120 (in Chinese). [35] WANG X, NI W, LI J J, et al. Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms[J]. Cement and Concrete Research, 2019, 125: 105893. [36] SHANG Y Z, CUI Z L, LI Y J, et al. Strength and microscopic mechanism of cement-fly ash-slag-desulfurization gypsum solidified mica schist weathered soil[J]. Materials, 2023, 16(21): 6957. [37] SWAMI A, JAIN R. Scikit-learn: Machine Learning in Python[J]. Journal of Machine Learning Research, 2013, 12(10): 2825-2830. |