欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (6): 2222-2232.DOI: 10.16552/j.cnki.issn1001-1625.2024.1227

• 资源综合利用 • 上一篇    下一篇

生物聚合物联合纤维固化黄土的耐久性研究

倪静1, 朱莉莉1, 耿雪玉2   

  1. 1.上海理工大学环境与建筑学院,上海 200093;
    2.温州大学建筑工程学院,温州 325035
  • 收稿日期:2024-10-16 修订日期:2025-01-02 发布日期:2025-06-27
  • 通信作者: 朱莉莉, 硕士研究生。E-mail: 2423979868@qq.com
  • 作者简介:倪 静(1983—),女,博士,副教授。主要从事软土地基加固方面的研究。E-mail:wendy_1943@163.com
  • 基金资助:
    国家自然科学基金(51978533);上海市白玉兰人才计划浦江项目A类(24PJA088)

Durability of Biopolymers Combined with Fiber-Treated Loess

NI Jing1, ZHU Lili1, GENG Xueyu2   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China;
    2. School of Civil Architecture and Engineering, Wenzhou University, Wenzhou 325035, China
  • Received:2024-10-16 Revised:2025-01-02 Online:2025-06-27

摘要: 为提升黄土在不同环境下的工程耐久性,本文采用生物聚合物联合纤维对黄土进行固化处理,开展了无侧限抗压试验,探讨了生物聚合物联合纤维固化黄土的抗压强度及其受干湿循环、冻融循环影响的变化规律和作用机理。结果表明:与未固化黄土比,生物聚合物和纤维混掺时,土体的抗压强度、延性都明显提高,当2.0%(质量分数)生物聚合物和1.00%(质量分数)纤维混掺时,固化黄土的抗压强度达到最大值6.47 MPa。在干湿循环和冻融循环下,固化黄土与未固化黄土的抗压强度均随循环次数的增加而降低,且干湿循环10次后固化黄土的抗压强度是未固化黄土的7.40倍,冻融循环10次后固化黄土的抗压强度是未固化黄土的2.30倍。综上所述,生物聚合物联合纤维固化黄土能够有效提升黄土在干湿和冻融环境下的工程耐久性。

关键词: 黄土, 黄原胶, 椰壳纤维, 干湿循环, 冻融循环, 抗压强度

Abstract: To enhance the engineering durability of the loess in various environments, this paper employed biopolymer combined fiber to treat the loess, conducted unconfined compressive tests, and explored the compressive strength of biopolymers combined with fiber-treated loess as well as its variation rule and action mechanism under the influence of drying-wetting cycles and freezing-thawing cycles. The results indicate that, in comparison to untreated loess, the compressive strength and ductility of loess are markedly enhanced when biopolymer and fiber are incorporated. Specifically, when the mixture contains 2.0% (mass fraction) biopolymer and 1.00% (mass fraction) fiber, the compressive strength of the treated loess attains its peak value of 6.47 MPa. Under drying-wetting cycles and freezing-thawing cycles, the compressive strength of both treated loess and untreated loess decrease with the increase in the number of cycles. Nevertheless, after 10 drying-wetting cycles, the compressive strength of the treated loess is 7.40 times that of the untreated loess, and after 10 freezing-thawing cycles, the compressive strength of the treated loess is 2.30 times that of the untreated loess. In summary,biopolymers combined with fiber-treated loess can effectively enhance the engineering durability of loess in drying-wetting and freezing-thawing environments.

Key words: loess, xanthan gum, coir fiber, drying-wetting cycle, freezing-thawing cycle, compressive strength

中图分类号: