硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 309-324.DOI: 10.16552/j.cnki.issn1001-1625.2025.0630
张少波1(
), 马健云2, 张新永1, 高新文1, 陈谦2(
)
收稿日期:2025-06-26
修订日期:2025-08-16
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
陈 谦,博士,讲师。E-mail:chenqian@chd.edu.cn
作者简介:张少波(1988—),男,高级工程师。主要从事道路工程方面的研究。E-mail:zhangshaobo2025@163.com
基金资助:
ZHANG Shaobo1(
), MA Jianyun2, ZHANG Xinyong1, GAO Xinwen1, CHEN Qian2(
)
Received:2025-06-26
Revised:2025-08-16
Published:2026-01-20
Online:2026-02-10
摘要:
纤维具备优异的强度与变形能力,将其掺入微表处混合料中能起到加筋、防水作用,可改善传统微表处易开裂、耐久性差等问题,显著提升微表处服役品质。本文系统梳理了纤维微表处材料组成及配比,揭示了物理、化学表面改性方法对纤维分散性及界面黏结的增强机制,对比评价了纤维类型、掺量及胶结料类型等因素对微表处施工性能、耐磨耗性能、抗水损性能、抗车辙性能的提升效果,分析了现有低温抗开裂性能评价方法局限性,推荐了纤维微表处用最佳纤维类型与掺量,阐明了纤维微表处性能提升机理,最后对纤维微表处未来研究趋势进行展望,旨在推动纤维微表处高品质发展与应用。
中图分类号:
张少波, 马健云, 张新永, 高新文, 陈谦. 路用纤维微表处材料组成与性能评价研究进展[J]. 硅酸盐通报, 2026, 45(1): 309-324.
ZHANG Shaobo, MA Jianyun, ZHANG Xinyong, GAO Xinwen, CHEN Qian. Research Progress on Composition and Performance Evaluation of Fiber-Modified Micro-Surfacing for Road[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 309-324.
图6 纤维微表处耐磨耗与抗水损性能[5,7-10,12-16,18-26,28,36-37,52-53]
Fig.6 Wear resistance and water damage resistance performance of fiber-modified micro-surfacing[5,7-10,12-16,18-26,28,36-37,52-53]
Test method | Evaluation index | Merit | Defect |
|---|---|---|---|
| Splitting test | Splitting-tensile strength,tensile strain,stiffness modulus | The specimen molding process is simple | There is a significant difference between the stress distribution state in the test and the actual stress state experienced by the pavement. Moreover, the thickness of the Marshall specimens used is 63 mm, which greatly differs from the thickness of micro-surfacing. Additionally, the specimen molding process involves compaction treatment, which exhibits considerable discrepancies compared to the actual paving conditions of micro-surfacing |
| Bending test | Tensile strength, maximum tensile strain,bending stiffness modulus | The stress state is similar to the actual stress state experienced by the pavement | The thickness of the trabecular specimen is 35 mm, which does not match the specimen at the micro-surfacing |
| SCB test | Fracture energy, fracture toughness | The stress state is similar to the actual stress state experienced by the pavement | There is a lack of a unified and standardized calculation method. The thickness of the test specimens is generally 25 mm, which significantly differs from the thickness of micro-surfacing. Furthermore, the Marshall specimens used undergo compaction treatment, presenting substantial discrepancies compared to the actual paving conditions of micro-surfacing |
表1 微表处低温抗开裂性能评价方法
Table 1 Evaluation method for low-temperature crack resistance of micro-surfacing
Test method | Evaluation index | Merit | Defect |
|---|---|---|---|
| Splitting test | Splitting-tensile strength,tensile strain,stiffness modulus | The specimen molding process is simple | There is a significant difference between the stress distribution state in the test and the actual stress state experienced by the pavement. Moreover, the thickness of the Marshall specimens used is 63 mm, which greatly differs from the thickness of micro-surfacing. Additionally, the specimen molding process involves compaction treatment, which exhibits considerable discrepancies compared to the actual paving conditions of micro-surfacing |
| Bending test | Tensile strength, maximum tensile strain,bending stiffness modulus | The stress state is similar to the actual stress state experienced by the pavement | The thickness of the trabecular specimen is 35 mm, which does not match the specimen at the micro-surfacing |
| SCB test | Fracture energy, fracture toughness | The stress state is similar to the actual stress state experienced by the pavement | There is a lack of a unified and standardized calculation method. The thickness of the test specimens is generally 25 mm, which significantly differs from the thickness of micro-surfacing. Furthermore, the Marshall specimens used undergo compaction treatment, presenting substantial discrepancies compared to the actual paving conditions of micro-surfacing |
| Test method | Evaluation index | Calculation formula | Comment |
|---|---|---|---|
| Splitting test | Splitting-tensile strength | ||
| Tensile strain | |||
| Stiffness modulus | |||
| Bending test | Tensile strength | ||
| Maximum tensile strain | |||
| Bending stiffness modulus | |||
| SCB test | Fracture energy | The low-temperature performance is evaluated by the energy absorbed before fracture | |
| Fracture toughness | It refers to the critical value of the stress intensity factor when the crack undergoes unstable expansion |
表2 低温抗开裂性能指标表达式
Table 2 Expression of indexes for low-temperature crack resistance
| Test method | Evaluation index | Calculation formula | Comment |
|---|---|---|---|
| Splitting test | Splitting-tensile strength | ||
| Tensile strain | |||
| Stiffness modulus | |||
| Bending test | Tensile strength | ||
| Maximum tensile strain | |||
| Bending stiffness modulus | |||
| SCB test | Fracture energy | The low-temperature performance is evaluated by the energy absorbed before fracture | |
| Fracture toughness | It refers to the critical value of the stress intensity factor when the crack undergoes unstable expansion |
| [1] |
《中国公路学报》编辑部. 中国路面工程学术研究综述·2024[J]. 中国公路学报, 2024, 37(3): 1-81.
DOI |
| Editorial Department of China Journal of Highway and Transport. Review on China’s pavement engineering research: 2024[J]. China Journal of Highway and Transport, 2024, 37(3): 1-81 (in Chinese). | |
| [2] |
HE L H, LI S, LI W J, et al. Performance evaluation of waterborne epoxy emulsified asphalt micro-surfacing with microwave-activated waste rubber powder[J]. Construction and Building Materials, 2024, 413: 134810.
DOI URL |
| [3] |
王朝辉, 陈 谦, 李彦伟, 等. 考虑纹理重构的道路养护吸能封层制备调控与功能评价[J]. 中国公路学报, 2024, 37(10): 1-13.
DOI |
| WANG C H, CHEN Q, LI Y W, et al. Preparation regulation and functional evaluation of road maintenance energy-absorbing seal considering texture reconstruction[J]. China Journal of Highway and Transport, 2024, 37(10): 1-13 (in Chinese). | |
| [4] | 李彦伟, 王育聪, 冯 雷, 等. 微表处用水性树脂基改性乳化沥青流变性能[J]. 空军工程大学学报, 2024, 25(5): 19-28. |
| LI Y W, WANG Y C, FENG L, et al. Rheological properties of waterborne resin-based modified emulsified asphalt for micro-surfacing[J]. Journal of Air Force Engineering University, 2024, 25(5): 19-28 (in Chinese). | |
| [5] | 王朝辉, 王若飞, 李彦伟, 等. PVA纤维改性树脂基微表处制备及性能[J]. 长安大学学报(自然科学版), 2024, 44(4): 1-14. |
| WANG C H, WANG R F, LI Y W, et al. Preparation and properties of PVA fiber modified resin-based micro-surfacing[J]. Journal of Chang’an University (Natural Science Edition), 2024, 44(4): 1-14 (in Chinese). | |
| [6] |
侯艺桐, 牛开民, 田 波, 等. PVA纤维-水性环氧微表处混合料路用性能研究[J]. 化工新型材料, 2022, 50(10): 266-269+274.
DOI |
|
HOU Y T, NIU K M, TIAN B, et al. Study on road performance of PVA fiber-waterborne EP micro surfacing mixture[J]. New Chemical Materials, 2022, 50(10): 266-269+274 (in Chinese).
DOI |
|
| [7] |
OTADI A, TANZADEH J. Laboratory investigation of microsurfacing asphalt modified with nanosilica and nanoclay combined with polyethylene fibers[J]. Journal of Testing and Evaluation, 2018, 46(4): 1321-1332.
DOI URL |
| [8] | 黎侃, 李新伟, 王端宜. 聚丙烯单丝纤维微表处路用性能研究[J]. 公路交通科技, 2013, 30(8): 17-22. |
| LI K, LI X W, WANG D Y. Study on road performances of micro-surfacing mixed with polypropylene filament fiber[J]. Journal of Highway and Transportation Research and Development, 2013, 30(8): 17-22 (in Chinese). | |
| [9] | 刘军营, 姚晓光, 罗要飞. 基于正交试验的纤维微表处路用性能研究[J]. 铁道科学与工程学报, 2016, 13(1): 82-88. |
| LIU J Y, YAO X G, LUO Y F. Research on pavement performance of fiber micro- surfacing based on orthogonal test[J]. Journal of Railway Science and Engineering, 2016, 13(1): 82-88 (in Chinese). | |
| [10] | 侯曙光, 侯 强. 纤维微表处混合料性能试验[J]. 南京工业大学学报(自然科学版), 2013, 35(3): 20-24. |
| HOU S G, HOU Q. Experimental study on performances of fibre reinforced micro-surfacing mixture[J]. Journal of Nanjing University of Technology (Natural Science Edition), 2013, 35(3): 20-24 (in Chinese). | |
| [11] |
LUO Y F, ZHANG K, ZHAO Y L, et al. Research on performance evolvement of fiber-reinforced micro-surfacing mixture[J]. International Journal of Pavement Research and Technology, 2025, 18(2): 418-430.
DOI |
| [12] |
LUO Y F, ZHANG K, XIE X B, et al. Performance evaluation and material optimization of micro-surfacing based on cracking and rutting resistance[J]. Construction and Building Materials, 2019, 206: 193-200.
DOI URL |
| [13] | 罗要飞, 于景兰, 张争奇, 等. 基于室内试验的不同材料改善微表处性能的研究[J]. 中外公路, 2021, 41(4): 307-312. |
| LUO Y F, YU J L, ZHANG Z Q, et al. Study on improvement of micro-surfacing performance for different materials based on laboratory tests[J]. Journal of China & Foreign Highway, 2021, 41(4): 307-312 (in Chinese). | |
| [14] | 孙增智, 薛 博, 陈华鑫. 纤维微表处路用性能的影响因素[J]. 筑路机械与施工机械化, 2019, 36(3): 56-61. |
| SUN Z Z, XUE B, CHEN H X. Influencing factors of pavement performance of fibre micro-surfacing[J]. Road Machinery & Construction Mechanization, 2019, 36(3): 56-61 (in Chinese). | |
| [15] | 李 微, 韩 森, 孙 培, 等. 橡胶-纤维微表处混合料路用性能及降噪特性研究[J]. 铁道科学与工程学报, 2017, 14(8): 1623-1631. |
| LI W, HAN S, SUN P, et al. Research on road performances and noise reduction characteristic of rubber-fiber micro-surfacing mixture[J]. Journal of Railway Science and Engineering, 2017, 14(8): 1623-1631 (in Chinese). | |
| [16] | 丁 敏, 汪 严, 裘秋波, 等. 老化条件下聚丙烯纤维改性乳化沥青及其微表处混合料性能分析[J]. 大连理工大学学报, 2024, 64(2): 204-212. |
| DING M, WANG Y, QIU Q B, et al. Performance analysis of polypropylene fiber modified emulsified asphalt and its micro-surfacing mixture under aging condition[J]. Journal of Dalian University of Technology, 2024, 64(2): 204-212 (in Chinese). | |
| [17] | 姚晓光, 张争奇, 罗要飞, 等. 间断级配纤维微表处性能及指标研究[J]. 中南大学学报(自然科学版), 2016, 47(9): 3264-3272. |
| YAO X G, ZHANG Z Q, LUO Y F, et al. Research on performance and indicator of gap-graded fiber micro-surfacing[J]. Journal of Central South University (Science and Technology), 2016, 47(9): 3264-3272 (in Chinese). | |
| [18] |
LI W B, ZHENG M L, NING Z, et al. The design and performance evaluation of low-noise rubber-fibre micro-surfacing pavement[J]. International Journal of Pavement Engineering, 2024, 25(1): 2414056.
DOI URL |
| [19] | ZHAO H Y, LI G, MA Y W, et al. Long-term performance of chemically modified cotton straw fibers in micro-surfacing asphalt mixtures[J]. Case Studies in Construction Materials, 2024, 20: e03294. |
| [20] |
XU W, SHAH Y I, CHENG Z, et al. Laboratory design and evaluation of a functional color micro-surfacing with synthetic resin-based binder[J]. Road Materials and Pavement Design, 2023, 24(10): 2343-2362.
DOI URL |
| [21] |
ZHANG Z, LIU K, CHONG D, et al. Evaluation of photocatalytic micro-surfacing mixture: road performance, vehicle exhaust gas degradation capacity and environmental impacts[J]. Construction and Building Materials, 2022, 345: 128367.
DOI URL |
| [22] |
AHMAD S A K, TANZADEH J, TAHAMI S A, et al. Performance evaluation of hybrid fibers and nano-zeolite modified asphalt micro-surfacing[J]. Journal of Testing and Evaluation, 2020, 48(3): 2412-2431.
DOI URL |
| [23] |
NETO A P, ILDEFONSO J S, LUKIANTCHUKI J A, et al. Evaluation of microsurfacing dosage with incorporation of textile fibers and sugarcane bottom ash[J]. International Journal of Pavement Research and Technology, 2025, 18(5): 1157-1174.
DOI |
| [24] | XIA Y F, JIA J, CHEN Q. Road performance comprehensive evaluation of polymer modified emulsified asphalt fiber microsurfacing[J]. Advances in Materials Science and Engineering, 2022, 2022(1): 8179137. |
| [25] | 于雪霞. 棉秸秆纤维改性微表处混合料路用性能研究[D]. 石河子: 石河子大学, 2023. |
| YU X X. Study on road performance of cotton straw fiber modified micro-surfacing mixture[D]. Shihezi: Shihezi University, 2023 (in Chinese). | |
| [26] | 李太阳. 玄武岩纤维微表处路用性能研究[D]. 吉林: 北华大学, 2020. |
| LI T Y. Research on pavement performance of basalt fiber micro-surfacing[D]. Jilin: Beihua University, 2020 (in Chinese). | |
| [27] | 邝坚锋. 耐久性微表处混合料室内试验及工程应用研究[D]. 广州: 华南理工大学, 2015. |
| KUANG J F. Lab tests and engineering applications research on durable micro-surface mixture[D]. Guangzhou: South China University of Technology, 2015 (in Chinese). | |
| [28] | 李素贤. 甘肃地区纤维微表处的适用性研究[D]. 西安: 长安大学, 2009. |
| LI S X. Study on the applicability of fiber micro-surfacing in Gansu region[D]. Xi’an: Chang’an University, 2009 (in Chinese). | |
| [29] | 胡富贵, 田小革, 胡宏立, 等. SBR胶乳掺量对改性乳化沥青性能的影响[J]. 建筑材料学报, 2021, 24(4): 895-900. |
| HU F G, TIAN X G, HU H L, et al. Effect of SBR latex content on performance of modified emulsified asphalt[J]. Journal of Building Materials, 2021, 24(4): 895-900 (in Chinese). | |
| [30] |
FAN Z T, WANG C H, LI Y W, et al. State of the art review on fog seal for asphalt pavement: material composition, classification, performance evaluation, and mechanism analysis[J]. Progress in Organic Coatings, 2024, 194: 108573.
DOI URL |
| [31] | 陈 谦, 王朝辉, 傅 豪, 等. 基于性能演变的水性环氧沥青开普封层施工方法优化[J]. 中国公路学报, 2021, 34(7): 236-245. |
|
CHEN Q. WANG C H, FU H,et al. Optimization of construction method of waterborne epoxy asphalt cape seal based on performance evolution[J]. China Journal of Highway and Transport, 2021, 34(7): 236-245 (in Chinese).
DOI |
|
| [32] |
CHEN Q, WANG C H, YU S X, et al. Low-temperature mechanical properties of polyurethane-modified waterborne epoxy resin for pavement coating[J]. International Journal of Pavement Engineering, 2023, 24(2): 2099853.
DOI URL |
| [33] |
FU H, WANG C H, WANG D T, et al. Durability evaluation of mechanical and bonding properties of polyurethane-modified waterborne epoxy resin for road[J]. International Journal of Pavement Engineering, 2023, 24(2): 2027419.
DOI URL |
| [34] | CHEN Q, WANG S S, WANG C H, et al. Modified waterborne epoxy as a cold pavement binder: Preparation and long-term working properties[J]. Journal of Materials in Civil Engineering, 2021, 33(5): 04021079. |
| [35] | 陈 谦, 王朝辉, 周 璐, 等. 中国路用水性环氧材料工作性能研究与应用进展[J]. 长安大学学报(自然科学版), 2022, 42(3): 26-40. |
| CHEN Q, WANG C H, ZHOU L, et al. Research and application progress of working properties of waterborne epoxy materials for road in China[J]. Journal of Chang’an University (Natural Science Edition), 2022, 42(3): 26-40 (in Chinese). | |
| [36] | 王 磊, 吕 璞, 郝培文. 微表处混合料路用性能影响因素[J]. 长安大学学报(自然科学版), 2014, 34(2): 29-33. |
| WANG L, LU P, HAO P W. Factors affecting pavement performance of micro-surfacing mixture[J]. Journal of Chang’an University (Natural Science Edition), 2014, 34(2): 29-33 (in Chinese). | |
| [37] | 杨 晨. 复掺纤维沥青混凝土路用性能试验及有限元模拟研究[D]. 沈阳: 沈阳工业大学, 2024. |
| YANG C. Experimental and finite element simulation study on the road performance of composite fiber reinforced asphalt concrete[D]. Shenyang: Shenyang University of Technology, 2024 (in Chinese). | |
| [38] | 陈 峰, 仪 珂, 王朝辉, 等. 纤维改性水泥基材料研究进展: 水泥稳定基层[J]. 硅酸盐通报, 2024, 43(9): 3479-3493. |
| CHEN F, YI K, WANG C H, et al. Research progress of fiber modified cement-based materials: cement stabilized base[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3479-3493 (in Chinese). | |
| [39] | 李 靖, 曹海波, 任海生. 玄武岩纤维增韧环氧沥青及其混合料性能研究[J]. 公路, 2024, 69(9): 285-290. |
| LI J, CAO H B, REN H S. Research on the performance of basalt fiber toughened epoxy asphalt and mixture[J]. Highway, 2024, 69(9): 285-290 (in Chinese). | |
| [40] |
吴林松, 王旭洋, 许泽宁, 等. 玄武岩纤维沥青胶浆抗剪性能研究[J]. 公路交通科技, 2023, 40(6): 17-24.
DOI |
| WU L S, WANG X Y, XU Z N, et al. Study on shear properties of asphalt mortar with basalt fiber[J]. Journal of Highway and Transportation Research and Development, 2023, 40(6): 17-24 (in Chinese). | |
| [41] |
《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66.
DOI |
|
Editorial Department of China Journal of Highway and Transport. Review on China’s pavement engineering Research·2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66 (in Chinese).
DOI |
|
| [42] | 蔡俊华. 玻璃纤维超薄罩面沥青混合料路用性能[J]. 长安大学学报(自然科学版), 2019, 39(5): 20-27. |
| CAI J H. Road performance of glass fiber ultra-thin overlay asphalt mixture[J]. Journal of Chang’an University (Natural Science Edition), 2019, 39(5): 20-27 (in Chinese). | |
| [43] | 朱洪洲, 谭祺琦, 杨孝思, 等. 纤维改性沥青混合料性能的研究现状与展望[J]. 科学技术与工程, 2022, 22(7): 2573-2584. |
| ZHU H Z, TAN Q Q, YANG X S, et al. Research status and prospect of fiber modified asphalt mixture performance[J]. Science Technology and Engineering, 2022, 22(7): 2573-2584 (in Chinese). | |
| [44] |
魏发云, 杨 帆, 王海楼, 等. 改性聚乙烯醇纤维增强水泥基复合材料制备及其力学性能[J]. 纺织学报, 2021, 42(10): 53-60.
DOI |
|
WEI F Y, YANG F, WANG H L, et al. Preparation and mechanical properties of cementitious composites reinforced by modified polyvinyl alcohol fiber[J]. Journal of Textile Research, 2021, 42(10): 53-60 (in Chinese).
DOI |
|
| [45] | 孔 林. 改性纤维乳化沥青冷再生混合料增强机理及性能研究[D]. 重庆: 重庆交通大学, 2022. |
| KONG L. Reinforcing mechanism and properties of coupled fiber emulsified asphalt cold recycled mixture[D]. Chongqing: Chongqing Jiaotong University, 2022 (in Chinese). | |
| [46] | 丁 聪, 郭丽萍, 陈 波, 等. 高强高模PVA纤维表面改性及耐碱性能[J]. 硅酸盐学报, 2019, 47(2): 228-235. |
| DING C, GUO L P, CHEN B, et al. Alkali resistance and surface modification of high strength and high modulus PVA fibers[J]. Journal of the Chinese Ceramic Society, 2019, 47(2): 228-235 (in Chinese). | |
| [47] | 张 伟, 张 钊, 曹 晖, 等. 表面预处理PVA纤维改性沥青的高温流变特性[J]. 深圳大学学报(理工版), 2022, 39(4): 409-416. |
| ZHANG W, ZHANG Z, CAO H, et al. High temperature rheological properties of surface pretreated PVA fiber modified asphalt[J]. Journal of Shenzhen University (Science and Engineering), 2022, 39(4): 409-416 (in Chinese). | |
| [48] |
LU Z F, KONG L, HE Z Y, et al. Modification mechanism and rheological properties of emulsified asphalt evaporative residues reinforced by coupling-modified fiber[J]. Materials, 2021, 14(23): 7363.
DOI URL |
| [49] |
XIAO J J, JIANG W, YE W L, et al. Effect of cement and emulsified asphalt contents on the performance of cement-emulsified asphalt mixture[J]. Construction and Building Materials, 2019, 220: 577-586.
DOI URL |
| [50] | 廖小春, 喻宝金. 水泥用量对纤维微表处混合料性能的影响分析[J]. 公路, 2017, 62(7): 29-32. |
| LIAO X C, YU B J. Analysis of the influence of cement content on fiber micro-surfacing performance[J]. Highway, 2017, 62(7): 29-32 (in Chinese). | |
| [51] | 郭 娟. 聚丙烯纤维对微表处混合料技术性能的影响研究[J]. 公路工程, 2015, 40(4): 163-167+173. |
| GUO J. Effect of polypropylene fiber on mixture technical performance of micro-surfacing[J]. Highway Engineering, 2015, 40(4): 163-167+173 (in Chinese). | |
| [52] | 董 哲. 橡胶粉-聚丙烯纤维复合改性微表处混合料技术性能研究[J]. 公路工程, 2015, 40(1): 79-83+132. |
| DONG Z. Study on technical performance of rubber powder-polypropylene fiber micro-surfacing mixture[J]. Highway Engineering, 2015, 40(1): 79-83+132 (in Chinese). | |
| [53] | 邓育训, 曹俊昌, 王 宏. 聚酯纤维-橡胶颗粒微表处混合料路用性能与降噪特性[J]. 公路, 2019, 64(10): 284-292. |
| DENG Y X, CAO J C, WANG H. Road performance and noise reduction characteristics of polyester fiber-rubber particle micro-surfacing mixture[J]. Highway, 2019, 64(10): 284-292 (in Chinese). | |
| [54] | 陈 飞, 张林艳, 封基良, 等. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(S2): 127-137. |
| CHEN F, ZHANG L Y, FENG J L, et al. Research progress on test methods of low temperature crack resistance of asphalt mixture[J]. Materials Reports, 2021, 35(S2): 127-137 (in Chinese). | |
| [55] | 陈 谦, 王朝辉, 李彦伟, 等. 道路养护吸能封层增韧缓力功效评价[J]. 中国公路学报, 2023, 36(12): 249-262. |
|
CHEN Q, WANG C H, LI Y W, et al. Evaluation of toughening and buffering effects of road maintenance energy-absorbing seal[J]. China Journal of Highway and Transport, 2023, 36(12): 249-262 (in Chinese).
DOI |
|
| [56] | 李震南, 申爱琴, 郭寅川, 等. 玄武岩纤维沥青胶浆及混合料的低温性能关联性[J]. 建筑材料学报, 2021, 24(1): 146-152. |
| LI Z N, SHEN A Q, GUO Y C, et al. Low temperature performance correlation of basalt fiber asphalt mortar and mixture[J]. Journal of Building Materials, 2021, 24(1): 146-152 (in Chinese). | |
| [57] | 葛折圣, 黄晓明, 许国光. 用弯曲应变能方法评价沥青混合料的低温抗裂性能[J]. 东南大学学报(自然科学版), 2002, (4): 653-655. |
| GE Z S, HUANG X M, XU G G. Evaluation of asphalt-mixture's low-temperature anti-cracking performance by curvature strain energy method[J]. Journal of Southeast University(Natural Science Edition), 2002, (4): 653-655 (in Chinese). |
| [1] | 安仰壮, 俞海, 刘昌庚. 基于数字图像相关的玄武岩纤维泡沫混凝土压缩损伤研究[J]. 硅酸盐通报, 2026, 45(1): 92-102. |
| [2] | 黄正涛, 关骏骁, 牛亚鹏, 崔艺铖, 何雄飞. 水泥稳定再生碎石的路用性能试验研究[J]. 硅酸盐通报, 2026, 45(1): 359-366. |
| [3] | 姜德民, 胡思雨, 康红龙, 李御锦, 候宇翔. 改性处理对3D打印稻草纤维水泥基复合材料性能的影响[J]. 硅酸盐通报, 2026, 45(1): 47-57. |
| [4] | 金清平, 杨振远, 梁颖强, 刘运蝶, 宋仕娥. 氯盐环境下GFRP筋-海砂混凝土深受弯构件承载性能研究[J]. 硅酸盐通报, 2026, 45(1): 81-91. |
| [5] | 王超男, 李雪峰, 武新月, 余晓婷, 李嘉丽, 杨丽敏, 白利忠. 香蒲绒衍生多孔碳纤维的制备及电化学性能研究[J]. 硅酸盐通报, 2025, 44(9): 3435-3443. |
| [6] | 余洁歆, 朱艺婷, 庄旭, 陈玉霜, 张广达, 许莉. 以尾矿砂为骨料的绿色工程水泥基复合材料力学性能研究[J]. 硅酸盐通报, 2025, 44(9): 3337-3346. |
| [7] | 谢君, 杜雨阳, 吴少鹏, 李梦林, 李超. 多孔Mg-Al基水滑石温拌剂的制备及其对沥青混合料性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3462-3471. |
| [8] | 田哲泉, 刘涛, 余刘成, 黄习习, 张艳, 衣向阳. 硫酸盐侵蚀-干湿循环下纤维-水泥改良渣土的力学性能[J]. 硅酸盐通报, 2025, 44(9): 3483-3492. |
| [9] | 朱建平, 曹佳楠, 王祚麟, 李根深, 刘松辉, 郑波, 冯春花. 低钙高镁石灰石制备固碳熟料及其碳酸化硬化机理[J]. 硅酸盐通报, 2025, 44(8): 2762-2770. |
| [10] | 周益凡, 张伟业, 陈安见, 冉金林, 王东星. 地聚合物注浆材料性能增强及工程应用研究综述[J]. 硅酸盐通报, 2025, 44(8): 2873-2890. |
| [11] | 赵宇, 王哲, 朱伶俐. 纤维对3D打印UHPC流变性能和力学性能的影响[J]. 硅酸盐通报, 2025, 44(8): 2823-2838. |
| [12] | 王华涛, 苗艳晖, 赵云良, 匡博文, 蒋熊睿, 高仁波, 张婷婷. CMC修饰二维蒙脱石薄膜模拟盐湖卤水多种离子分离的研究[J]. 硅酸盐通报, 2025, 44(8): 3069-3078. |
| [13] | 刘佳鑫, 刘莉, 王爽, 张诗晟, 朱庆霞. 醋酸纤维素/羟基磷灰石复合膜的二氧化钛表面改性研究[J]. 硅酸盐通报, 2025, 44(8): 3079-3087. |
| [14] | 徐龙飞, 刘世玺, 李艳杰, 杨令强. SMAF-FRCC抗折性能及循环加载性能研究[J]. 硅酸盐通报, 2025, 44(7): 2378-2387. |
| [15] | 郝如升, 胡炜, 贺晶晶, 吴文博, 卢浩丹, 张伟. 纤维类型对高延性水泥基材料力学性能与微观结构的影响[J]. 硅酸盐通报, 2025, 44(7): 2396-2405. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||