[1] ZHANG J, GONG C X, GUO Z L, et al. Engineered cementitious composite with characteristic of low drying shrinkage[J]. Cement and Concrete Research, 2009, 39(4): 303-312. [2] LI V C. Advances in ECC research[J]. ACI Special Publications, 2002, 206: 373-400. [3] 欧阳建新, 郭荣鑫, 万夫雄, 等. 玄武岩复合材料筋增强ECC受拉性能及裂缝控制机理[J]. 硅酸盐通报, 2022, 41(8): 2684-2695. OUYANG J X, GUO R X, WAN F X, et al. Tensile property and crack control mechanism of basalt fiber reinforced polymer bar reinforced ECC[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(8): 2684-2695 (in Chinese). [4] 贾 毅, 刘鹏曾, 柳其钱, 等. 模拟地震作用下PP-ECC桥墩抗弯性能试验研究[J]. 硅酸盐通报, 2024, 43(10): 3623-3633. JIA Y, LIU P Z, LIU Q Q, et al. Flexural performance of PP-ECC bridge pier under simulated earthquake[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(10): 3623-3633 (in Chinese). [5] 熊晓立, 杨政险, 罗盛洋, 等. ECC路面面层的生命周期评价和成本分析[J]. 硅酸盐通报, 2023, 42(11): 3927-3936. XIONG X L, YANG Z X, LUO S Y, et al. Life cycle assessment and cost analysis of ECC pavement overlay[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3927-3936 (in Chinese). [6] LI V C. Performance driven design of fiber reinforced cementitious composites[M]//Fibre Reinforced Cement and Concrete. Boca Raton: CRC Press, 1992: 34-52. [7] LI V C, WANG S, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492. [8] 刘军宏, 郑银林, 马锋玲, 等. 不同PVA纤维增强水泥基复合材料性能试验研究[J]. 混凝土与水泥制品, 2023(2): 55-59. LIU J H, ZHENG Y L, MA F L, et al. Experimental study on properties of different PVA fiber reinforced cementitious composites[J]. China Concrete and Cement Products, 2023(2): 55-59 (in Chinese). [9] 姚淇耀, 陆宸宇, 罗月静, 等. PE/PVA纤维海砂ECC的拉伸性能与本构模型[J]. 建筑材料学报, 2022, 25(9): 976-983. YAO Q Y, LU C Y, LUO Y J, et al. Tensile properties and constitutive model of PE/PVA fiber sea sand ECC[J]. Journal of Building Materials, 2022, 25(9): 976-983 (in Chinese). [10] YU J T, LIU K K, XU Q F, et al. Feasibility of using seawater to produce ultra-high ductile cementitious composite for construction without steel reinforcement[J]. Structural Concrete, 2019, 20(2): 774-785. [11] 贾 毅, 宋浩博, 柳其钱, 等. 高韧性聚丙烯纤维混凝土的配合比及力学性能试验研究[J]. 材料导报, 2024, 38(增刊2): 657-661. JIA Y, SONG H B, LIU Q Q, et al. Experimental study on mix ratio and mechanical properties of high toughness polypropylene fiber concrete[J]. Materials Reports, 2024, 38(supplement 2): 657-661 (in Chinese). [12] SAHMARAN M, LACHEMI M, HOSSAIN K M, et al. Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites[J]. ACI Materials Journal, 2009, 106(3): 308. [13] 石 妍, 李家正, 吕兴栋, 等. 人工砂最大粒径对水工高延性纤维增强水泥基复合材料性能的影响研究[J]. 新型建筑材料, 2022, 49(10): 40-44. SHI Y, LI J Z, LV X D, et al. Influence of the maximum particle size of artificial sand on the performance of hydraulic ECC mixtures[J]. New Building Materials, 2022, 49(10): 40-44 (in Chinese). [14] 王振波, 郝如升, 李鹏飞, 等. 海水珊瑚砂ECC的力学性能与裂纹宽度控制[J]. 复合材料学报, 2023, 40(4): 2261-2272. WANG Z B, HAO R S, LI P F, et al. Mechanical properties and crack width control of seawater coral sand ECC[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2261-2272 (in Chinese). [15] 滕晓丹, 姚淇耀, 陆宸宇, 等. BFRP筋与分级粒径河砂ECC粘结滑移性能试验研究[J]. 硅酸盐通报, 2022, 41(4): 1264-1275. TENG X D, YAO Q Y, LU C Y, et al. Experimental study on bond-slip performance between BFRP bars and ECC with graded particle size river sand[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1264-1275 (in Chinese). [16] 李 祚, 姚淇耀, 朱圣焱, 等. 乌兰布和沙漠砂制备高延性水泥基复合材料的力学性能[J]. 硅酸盐通报, 2021, 40(4): 1103-1115. LI Z, YAO Q Y, ZHU S Y, et al. Mechanical properties of engineered cementitious composites prepared with sand in ulanbuh desert[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(4): 1103-1115 (in Chinese). [17] 阚黎黎, 章 志, 张 利, 等. 低成本PVA纤维对超高韧性水泥基复合材料力学性能的影响[J]. 工程力学, 2019, 36(11): 121-129+182. KAN L L, ZHANG Z, ZHANG L, et al. Effect of low-cost PVA fibers on the mechanical properties of engineered cementitious composites[J]. Engineering Mechanics, 2019, 36(11): 121-129+182 (in Chinese). [18] 张品乐, 朱昊天, 胡 静, 等. 高性价比混杂纤维工程水泥基复合材料的力学性能研究[J]. 硅酸盐通报, 2023, 42(11): 3816-3826. ZHANG P L, ZHU H T, HU J, et al. Mechanical properties of high cost performance hybrid fiber engineered cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 3816-3826 (in Chinese). [19] 车佳玲, 吴 杰, 谷家威, 等. 玄武岩织物-钢-PVA工程水泥基复合材料单轴受压力学性能研究[J]. 硅酸盐通报, 2024, 43(7): 2363-2371. CHE J L, WU J, GU J W, et al. Uniaxial compressive mechanical performance of basalt fiber fabric-steel-PVA engineered cementitious composites[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(7): 2363-2371 (in Chinese). [20] 罗洪林, 杨鼎宜, 周兴宇, 等. 不同长径比聚丙烯纤维增强混凝土的力学特性[J]. 复合材料学报, 2019, 36(8): 1935-1948. LUO H L, YANG D Y, ZHOU X Y, et al. Mechanical properties of polypropylene fiber reinforced concrete with different aspect ratios[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1935-1948 (in Chinese). [21] ZHOU J J, PAN J L, LEUNG C K Y. Mechanical behavior of fiber-reinforced engineered cementitious composites in uniaxial compression[J]. Journal of Materials in Civil Engineering, 2015, 27(1): 04014111. [22] 王振波, 左建平, 张 君, 等. 混杂纤维延性水泥基材料单轴受压力学特性[J]. 建筑材料学报, 2018, 21(4): 639-644. WANG Z B, ZUO J P, ZHANG J, et al. Mechanical properties of hybrid fiber reinforced engineered cementitious composites under uniaxial compression[J]. Journal of Building Materials, 2018, 21(4): 639-644 (in Chinese). [23] 姚淇耀, 陆宸宇, 彭林欣, 等. 氯盐侵蚀作用下BFRP筋增强海砂ECC的拉伸及弯曲性能试验[J]. 复合材料学报, 2022, 39(3): 1215-1227. YAO Q Y, LU C Y, PENG L X, et al. Experimental study on tensile and bending properties of sea sand ECC reinforced by BFRP bars under chloride salt erosion[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1215-1227 (in Chinese). [24] KIM H Y, YANG K H, LEE H J. Toughness performance of lightweight aggregate concrete reinforced with steel fibers[J]. ACI Materials Journal, 2023, 120(5): 3-14. [25] JIN S S, ZHANG J X, HAN S. Fractal analysis of relation between strength and pore structure of hardened mortar[J]. Construction and Building Materials, 2017, 135: 1-7. [26] 张少辉, 王 艳, 郭冰冰, 等. 温度场与硫酸盐侵蚀耦合作用混凝土孔结构分形特征演化规律[J]. 硅酸盐学报, 2024, 52(2): 474-484. ZHANG S H, WANG Y, GUO B B, et al. Evolution of fractal characteristics of concrete pore structure under coupling effect of temperature field and sulphate attack[J]. Journal of the Chinese Ceramic Society, 2024, 52(2): 474-484 (in Chinese). [27] 王 磊, 尹梦环, 张继旺, 等. 纤维对再生砖混ECC力学性能及微观结构的影响[J]. 硅酸盐通报, 2023, 42(10): 3479-3488. WANG L, YIN M H, ZHANG J W, et al. Effect of fiber on mechanical properties and microstructure of recycled brick concrete ECC[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3479-3488 (in Chinese). [28] 陈 娅, 万小梅, 崔允铮, 等. 纤维表面改性对EGC力学性能的影响[J]. 硅酸盐通报, 2023, 42(4): 1174-1182+1193. CHEN Y, WAN X M, CUI Y Z, et al. Effect of fiber surface modification on mechanical properties of EGC[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1174-1182+1193 (in Chinese). [29] 孙健翔, 袁宇辉, 陈凯峰, 等. 国产PVA纤维理化特性及其水泥基复合材料性能研究[J]. 建筑结构, 2023, 53(S1): 1562-1568. SUN J X, YUAN Y H, CHEN K F, et al. Study on physical and chemical properties of domestic PVA fiber and properties of cement-based composites[J]. Building Structure, 2023, 53(S1): 1562-1568 (in Chinese). [30] YANG E H, LI V C. Strain-rate effects on the tensile behavior of strain-hardening cementitious composites[J]. Construction and Building Materials, 2014, 52: 96-104. [31] LI Y Z, LI J X, YANG E H, et al. Investigation of matrix cracking properties of engineered cementitious composites (ECCs) incorporating river sands[J]. Cement and Concrete Composites, 2021, 123: 104204. |