硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 325-335.DOI: 10.16552/j.cnki.issn1001-1625.2025.0784
收稿日期:2025-08-04
修订日期:2025-09-22
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
黄修林,博士,教授。E-mail:583887449@qq.com
作者简介:鲁依萍(2001—),女,硕士研究生。主要从事流态固化土方面的研究。E-mail:915696132@qq.com
基金资助:
LU Yiping1(
), HUANG Xiulin1,2(
), ZHOU Zichen3, LIU Shiqi3
Received:2025-08-04
Revised:2025-09-22
Published:2026-01-20
Online:2026-02-10
摘要:
本文以丙烯酸丁酯(BA)、丙烯酸(AA)和水玻璃为主要原料,十二烷基硫酸钠(SDS)和烷基酚聚氧乙烯醚(OP-10)为复合乳化剂,采用预乳化半连续种子乳液聚合法合成复合土壤固化剂(PBA),通过正交试验研究了水玻璃模数、固化剂掺量及水土比对PBA固化土无侧限抗压强度的影响。FT-IR结果分析表明,BA、AA和水玻璃三种单体均参与反应。当水玻璃模数为2.2、固化剂掺量为4%(质量分数)、水土比为0.44时,PBA固化土性能最优,流动度达到132 mm,7 d无侧限抗压强度为1.37 MPa。
中图分类号:
鲁依萍, 黄修林, 周紫晨, 刘仕琪. 聚丙烯酸丁酯-丙烯酸/水玻璃复合改性淤泥的流变特性与力学性能[J]. 硅酸盐通报, 2026, 45(1): 325-335.
LU Yiping, HUANG Xiulin, ZHOU Zichen, LIU Shiqi. Rheological and Mechanical Properties of Polybutyl Acrylate-Acrylic Acid/Water Glass Composite Modified Sludge[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 325-335.
| Sample No. | M | G/% | S |
|---|---|---|---|
| a-1 | 1.9 | 2 | 0.41 |
| a-2 | 1.9 | 3 | 0.42 |
| a-3 | 1.9 | 4 | 0.43 |
| a-4 | 1.9 | 5 | 0.44 |
| a-5 | 2.2 | 2 | 0.42 |
| a-6 | 2.2 | 3 | 0.41 |
| a-7 | 2.2 | 4 | 0.44 |
| a-8 | 2.2 | 5 | 0.43 |
| a-9 | 2.5 | 2 | 0.43 |
| a-10 | 2.5 | 3 | 0.44 |
| a-11 | 2.5 | 4 | 0.41 |
| a-12 | 2.5 | 5 | 0.42 |
| a-13 | 2.8 | 2 | 0.44 |
| a-14 | 2.8 | 3 | 0.43 |
| a-15 | 2.8 | 4 | 0.42 |
| a-16 | 2.8 | 5 | 0.41 |
表1 PBA试验方案参数
Table 1 Parameters of experiment for PBA
| Sample No. | M | G/% | S |
|---|---|---|---|
| a-1 | 1.9 | 2 | 0.41 |
| a-2 | 1.9 | 3 | 0.42 |
| a-3 | 1.9 | 4 | 0.43 |
| a-4 | 1.9 | 5 | 0.44 |
| a-5 | 2.2 | 2 | 0.42 |
| a-6 | 2.2 | 3 | 0.41 |
| a-7 | 2.2 | 4 | 0.44 |
| a-8 | 2.2 | 5 | 0.43 |
| a-9 | 2.5 | 2 | 0.43 |
| a-10 | 2.5 | 3 | 0.44 |
| a-11 | 2.5 | 4 | 0.41 |
| a-12 | 2.5 | 5 | 0.42 |
| a-13 | 2.8 | 2 | 0.44 |
| a-14 | 2.8 | 3 | 0.43 |
| a-15 | 2.8 | 4 | 0.42 |
| a-16 | 2.8 | 5 | 0.41 |
| Sample No. | Fluidity/mm | Unconfined compressive strength/MPa | |
|---|---|---|---|
| 7 d | 28 d | ||
| a-1 | 100 | 1.37 | 1.40 |
| a-2 | 130 | 1.39 | 1.40 |
| a-3 | 132 | 1.73 | 2.20 |
| a-4 | 138 | 1.95 | 1.98 |
| a-5 | 101 | 1.35 | 1.38 |
| a-6 | 105 | 1.58 | 1.60 |
| a-7 | 132 | 1.37 | 1.45 |
| a-8 | 124 | 1.47 | 1.48 |
| a-9 | 120 | 1.30 | 1.31 |
| a-10 | 132 | 1.31 | 1.33 |
| a-11 | 105 | 1.45 | 1.50 |
| a-12 | 129 | 1.40 | 1.41 |
| a-13 | 140 | 0.98 | 1.10 |
| a-14 | 145 | 1.00 | 1.20 |
| a-15 | 134 | 1.15 | 1.30 |
| a-16 | 100 | 1.35 | 1.40 |
表 2 PBA固化土的流动度与无侧限抗压强度值
Table 2 Fluidity and unconfined compressive strength values of PBA-cured soil
| Sample No. | Fluidity/mm | Unconfined compressive strength/MPa | |
|---|---|---|---|
| 7 d | 28 d | ||
| a-1 | 100 | 1.37 | 1.40 |
| a-2 | 130 | 1.39 | 1.40 |
| a-3 | 132 | 1.73 | 2.20 |
| a-4 | 138 | 1.95 | 1.98 |
| a-5 | 101 | 1.35 | 1.38 |
| a-6 | 105 | 1.58 | 1.60 |
| a-7 | 132 | 1.37 | 1.45 |
| a-8 | 124 | 1.47 | 1.48 |
| a-9 | 120 | 1.30 | 1.31 |
| a-10 | 132 | 1.31 | 1.33 |
| a-11 | 105 | 1.45 | 1.50 |
| a-12 | 129 | 1.40 | 1.41 |
| a-13 | 140 | 0.98 | 1.10 |
| a-14 | 145 | 1.00 | 1.20 |
| a-15 | 134 | 1.15 | 1.30 |
| a-16 | 100 | 1.35 | 1.40 |
| Item | Level | |||
|---|---|---|---|---|
| M | G | S | ||
| Fluidity/mm | K1 | 500 | 461 | 410 |
| K2 | 462 | 512 | 494 | |
| K3 | 486 | 503 | 521 | |
| K4 | 519 | 491 | 542 | |
7 d uncontined compressive strength/MPa | K5 | 6.44 | 5.00 | 5.75 |
| K6 | 5.77 | 5.28 | 5.29 | |
| K7 | 5.46 | 5.70 | 5.50 | |
| K8 | 4.48 | 6.17 | 5.61 | |
28 d uncontined compressive strength/MPa | K9 | 6.98 | 5.19 | 5.90 |
| K10 | 5.91 | 5.53 | 5.49 | |
| K11 | 5.55 | 6.45 | 6.19 | |
| K12 | 5.00 | 6.27 | 5.86 | |
| R1/mm | 14.25 | 12.75 | 33.00 | |
| R2/MPa | 0.49 | 0.29 | 0.12 | |
| R3/MPa | 0.50 | 0.32 | 0.18 | |
表3 极差分析表
Table 3 Range analysis table
| Item | Level | |||
|---|---|---|---|---|
| M | G | S | ||
| Fluidity/mm | K1 | 500 | 461 | 410 |
| K2 | 462 | 512 | 494 | |
| K3 | 486 | 503 | 521 | |
| K4 | 519 | 491 | 542 | |
7 d uncontined compressive strength/MPa | K5 | 6.44 | 5.00 | 5.75 |
| K6 | 5.77 | 5.28 | 5.29 | |
| K7 | 5.46 | 5.70 | 5.50 | |
| K8 | 4.48 | 6.17 | 5.61 | |
28 d uncontined compressive strength/MPa | K9 | 6.98 | 5.19 | 5.90 |
| K10 | 5.91 | 5.53 | 5.49 | |
| K11 | 5.55 | 6.45 | 6.19 | |
| K12 | 5.00 | 6.27 | 5.86 | |
| R1/mm | 14.25 | 12.75 | 33.00 | |
| R2/MPa | 0.49 | 0.29 | 0.12 | |
| R3/MPa | 0.50 | 0.32 | 0.18 | |
| S | M | G/% | Sample No. |
|---|---|---|---|
| 0.43 | 1.9 | 2 | None |
| 0.43 | 1.9 | 3 | None |
| 0.43 | 2.8 | 2 | None |
| 0.43 | 2.8 | 3 | a-14 |
| 0.44 | 1.9 | 2 | None |
| 0.44 | 1.9 | 3 | None |
| 0.44 | 2.8 | 2 | a-13 |
| 0.44 | 2.8 | 3 | None |
表4 基于流动度的试验参数排列组合表
Table 4 Arrangement and combination table of experimental parameters based on fluidity
| S | M | G/% | Sample No. |
|---|---|---|---|
| 0.43 | 1.9 | 2 | None |
| 0.43 | 1.9 | 3 | None |
| 0.43 | 2.8 | 2 | None |
| 0.43 | 2.8 | 3 | a-14 |
| 0.44 | 1.9 | 2 | None |
| 0.44 | 1.9 | 3 | None |
| 0.44 | 2.8 | 2 | a-13 |
| 0.44 | 2.8 | 3 | None |
| M | G/% | S | Sample No. |
|---|---|---|---|
| 1.9 | 4 | 0.43 | a-3 |
| 1.9 | 4 | 0.44 | None |
| 1.9 | 5 | 0.43 | None |
| 1.9 | 5 | 0.44 | a-4 |
| 2.2 | 4 | 0.43 | None |
| 2.2 | 4 | 0.44 | a-7 |
| 2.2 | 5 | 0.43 | a-8 |
| 2.2 | 5 | 0.44 | None |
表5 基于无侧限抗压强度的试验参数排列组合表
Table 5 Arrangement and combination table of experimental parameters based on unconfined compressive strength
| M | G/% | S | Sample No. |
|---|---|---|---|
| 1.9 | 4 | 0.43 | a-3 |
| 1.9 | 4 | 0.44 | None |
| 1.9 | 5 | 0.43 | None |
| 1.9 | 5 | 0.44 | a-4 |
| 2.2 | 4 | 0.43 | None |
| 2.2 | 4 | 0.44 | a-7 |
| 2.2 | 5 | 0.43 | a-8 |
| 2.2 | 5 | 0.44 | None |
| [1] | 刘亦民, 饶少华, 万志辉, 等. 超高层建筑大直径钻孔灌注桩后压浆技术的应用与研究[J]. 建筑结构, 2022, 52(增刊1): 2793-2797. |
| LIU Y M, RAO S H, WAN Z H, et al. Application and research of post-grouting technology in large-diameter drilled pile in super high rise buildings[J]. Building Structure, 2022, 52(supplement 1): 2793-2797 (in Chinese). | |
| [2] | 马永磊, 马千越, 张 悦, 等. 工程弃土和粉煤灰复合泡沫轻质土力学特性分析[J]. 土木工程与绿色建筑, 2025, 1(2): 88-91. |
| MA Y L, MA Q Y, ZHANG Y, et al. Mechanical characteristics analysis of engineering dumped soil and fly ash composite foam lightweight soil[J]. Civil Engineering and Green Building, 2025, 1(2): 88-91 (in Chinese). | |
| [3] | 杨郭昊, 张本农, 胡艳军. 有机固废燃烧过程中细颗粒物表面环境持久性自由基生成的研究进展[J]. 能源环境保护, 2023, 37(3): 118-127. |
| YANG G H, ZHANG B N, HU Y J. Research progress on the generation of environmental persistent free radicals on the surface of fine particulates during the combustion of organic solid waste[J]. Energy Environmental Protection, 2023, 37(3): 118-127 (in Chinese). | |
| [4] | 王东星, 王宏伟, 邹维列, 等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3197-3205. |
| WANG D X, WANG H W, ZOU W L, et al. Study on microscopic mechanism of solidification of sludge by alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(supplement 1): 3197-3205 (in Chinese). | |
| [5] | 王君如, 朱伟豪. 基于水热固化的工程弃土制备建材技术研究[J]. 中国市政工程, 2025(3): 71-75+186. |
| WANG J R, ZHU W H. Research on the preparation of building materials from engineering spoils based on hydrothermal curing[J]. China Municipal Engineering, 2025(3): 71-75+186 (in Chinese). | |
| [6] | 李 瑜. 关于“十四五” 大宗固体废弃物综合利用的指导意见[J]. 砖瓦, 2021(4): 189-190. |
| LI Y. Guiding opinions on comprehensive utilization of bulk solid wastes in the 14th Five-Year Plan[J]. Brick-Tile, 2021(4): 189-190 (in Chinese). | |
| [7] | 张 昀. 流态固化土在基坑肥槽回填中的应用[J]. 建筑技术, 2025, 56(13): 1558-1560. |
| ZHANG Y. Application of fluid stabilized soil in backfilling of foundation pit fertilizer trough[J]. Architecture Technology, 2025, 56(13): 1558-1560 (in Chinese). | |
| [8] | 季 节, 梁 犇, 韩秉烨, 等. 中国道路工程中土壤固化技术综述[J]. 交通运输工程学报, 2023, 23(2): 47-66. |
| JI J, LIANG B, HAN B Y, et al. Review on soil solidified technologies in road engineering in China[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 47-66 (in Chinese). | |
| [9] | 徐日庆, 朱坤垅, 黄 伟, 等. 淤泥质土固化及路用性能试验研究[J]. 湖南大学学报(自然科学版), 2022, 49(3): 167-174. |
| XU R Q, ZHU K L, HUANG W, et al. Experimental study on solidification and road performance of mucky soil[J]. Journal of Hunan University (Natural Sciences), 2022, 49(3): 167-174 (in Chinese). | |
| [10] | WANG D X, ABRIAK N E, ZENTAR R. Dredged marine sediments used as novel supply of filling materials for road construction[J]. Marine Georesources & Geotechnology, 2017, 35(4): 472-480. |
| [11] | 林 楠, 周 群. 既有弃土场填土对新建桥梁结构基础的影响和整治方案分析[J]. 西部交通科技, 2023(11): 128-132. |
| LIN N, ZHOU Q. Influence of filling in existing spoil ground on structural foundation of new bridge and analysis of treatment scheme[J]. Western China Communications Science & Technology, 2023(11): 128-132 (in Chinese). | |
| [12] | 秦玉禹, 秦子鹏, 黄 煌, 等. 水泥与粗颗粒工程弃土复合固化改良淤泥土试验研究[J]. 科学技术与工程, 2024, 24(12): 5076-5087. |
| QIN Y Y, QIN Z P, HUANG H, et al. Experimental study on composite solidification and improvement of silt soil by cement and coarse particle engineering spoil[J]. Science Technology and Engineering, 2024, 24(12): 5076-5087 (in Chinese). | |
| [13] | 周海龙, 申向东. 土壤固化剂的应用研究现状与展望[J]. 材料导报, 2014, 28(9): 134-138. |
| ZHOU H L, SHEN X D. Application research situation and prospect of soil stabilizer[J]. Materials Review, 2014, 28(9): 134-138 (in Chinese). | |
| [14] | 孔 恒, 王凯丽, 姜 瑜, 等. 环保型土壤固化剂的现状与发展策略[J]. 市政技术, 2019, 37(2): 237-241. |
| KONG H, WANG K L, JIANG Y, et al. Present situation and development strategy of environment-friendly soil stabilizer[J]. Municipal Engineering Technology, 2019, 37(2): 237-241 (in Chinese). | |
| [15] |
PENG Z C, GAO Y X, YANG W, et al. Effects of a full-solid waste-based soil stabilizer: strength, durability and microstructure[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2025, 40(3): 792-800.
DOI |
| [16] |
YU B W, MA Q W, LIU S Q, et al. Utilization of calcium carbide residue based soil stabilizer in road construction: strength, environmental impact, and field application[J]. Transportation Geotechnics, 2024, 49: 101422.
DOI URL |
| [17] | 杨圣鹏. 电石渣-矿渣-粉煤灰基地聚物固化淤泥质土力学性能及微观结构特征[J]. 湖南交通科技, 2025, 51(2): 110-114+121. |
| YANG S P. Mechanical properties and microstructural characteristics of solidified silty soil with carbide slag-slag-fly ash base polymer[J]. Hunan Communication Science and Technology, 2025, 51(2): 110-114+121 (in Chinese). | |
| [18] | 黄煜镔, 张 凯, 周静静, 等. 流化床燃煤固硫灰固化淤泥质土路用性能研究[J]. 应用基础与工程科学学报, 2019, 27(2): 375-383. |
| HUANG Y B, ZHANG K, ZHOU J J, et al. Experiment study on the road performances of muddy soil cured by fluidized bed combustion ashes[J]. Journal of Basic Science and Engineering, 2019, 27(2): 375-383 (in Chinese). | |
| [19] | 张大捷, 田晓峰, 侯浩波, 等. 矿渣胶凝材料固化软土的力学性状及机制[J]. 岩土力学, 2007, 28(9): 1987-1991. |
| ZHANG D J, TIAN X F, HOU H B, et al. Mechanical behavior and mechanism of stabilizing soft soil by slag cementitious material[J]. Rock and Soil Mechanics, 2007, 28(9): 1987-1991 (in Chinese). | |
| [20] | 刘振建, 姚 达, 邱成春, 等. 水泥-粉煤灰固化海相淤泥质软土力学特性室内试验研究[J]. 江苏水利, 2024(11): 34-38. |
| LIU Z J, YAO D, QIU C C, et al. Laboratory experimental study on the mechanical properties of cement-fly ash solidified marine silty soft soil[J]. Jiangsu Water Resources, 2024(11): 34-38 (in Chinese). | |
| [21] | 邹斌, 沈如, 齐琳琳. 改性脲醛树脂加固基床土质的研究[J]. 西南交通大学学报, 2001, 36(1): 33-36. |
| ZOU B, SHEN R, QI L L. Research on stabilizing the railway roadbed with improved urea-formaldehyde-resin[J]. Journal of Southwest Jiaotong University, 2001, 36(1): 33-36 (in Chinese). | |
| [22] | 孔繁轩, 羊东, 刘瑾, 等. 聚氨酯型固化剂改良砂土的固结特性试验研究[J]. 勘察科学技术, 2019(4): 1-6. |
| KONG F X, YANG D, LIU J, et al. Experimental study on consolidation characteristics of sand modified by polyurethane curing agent[J]. Site Investigation Science and Technology, 2019(4): 1-6 (in Chinese). | |
| [23] | 吴冠雄. 生物酶土壤固化剂加固土现场试验研究[J]. 公路工程, 2013, 38(1): 70-74+81. |
| WU G X. Field test study on stabilized soil by TerraZyme soil stabilizer[J]. Highway Engineering, 2013, 38(1): 70-74+81 (in Chinese). | |
| [24] | 郑永新, 张栓栓, 刘国帅, 等. 废弃渣土固化用无机-有机复合固化剂优选[J]. 当代化工, 2025, 54(4): 890-893+902. |
| ZHENG Y X, ZHANG S S, LIU G X, et al. Optimization of inorganic organic composite curing agents for waste soil consolidaton[J]. Contemporary Chemical Industry, 2025, 54(4): 890-893+902 (in Chinese). | |
| [25] | 邢世强, 董 勋, 张光华, 等. 抗水性聚丙烯酸酯类土壤固化剂的制备及性能[J]. 应用化工, 2022, 51(10): 2875-2879. |
| XING S Q, DONG X, ZHANG G H, et al. Preparation and properties of water-resistant polyacrylate soil curing agent[J]. Applied Chemical Industry, 2022, 51(10): 2875-2879 (in Chinese). | |
| [26] | 蒋明烨, 胡贺松, 梁湖清, 等. 土壤固化剂的研究及其工程应用进展[J]. 广州建筑, 2024, 52(8): 109-113. |
| JIANG M Y, HU H S, LIANG H Q, et al. Research progress and engineering application of soil stabilizers[J]. Guangzhou Architecture, 2024, 52(8): 109-113 (in Chinese). | |
| [27] | ZHOU Y X, HUO M H, ZHANG L S, et al. Strength development and solidification mechanism of soils with different properties stabilized by cement-slag-based materials[J]. Case Studies in Construction Materials, 2024, 21: e04034. |
| [1] | 岳鹏飞, 郭思标, 丁秀娟, 王玉松, 王大周, 胡悦, 张蓉蓉, 章纲, 丁金孟. 粉煤灰-矿渣-赤泥基胶凝材料固化土强度和微观机理研究[J]. 硅酸盐通报, 2026, 45(1): 336-345. |
| [2] | 何兆益, 邹萌, 姚启文, 曹东伟, 秦猛. 高掺量磷石膏-水泥-固化剂稳定碎石基层材料的性能及强度形成机理[J]. 硅酸盐通报, 2026, 45(1): 346-358. |
| [3] | 胡建林, 李智林, 周永祥, 冷发光, 杜修力. 生石灰激发高炉矿渣-粉煤灰地质聚合物固化土力学特性研究[J]. 硅酸盐通报, 2025, 44(8): 2912-2923. |
| [4] | 赫明胜, 秦庆金, 高慧, 曲春雨, 秦永, 房奎圳, 郝建帅. 减水剂对镁渣-粉煤灰基流态固化土流变性及强度的影响[J]. 硅酸盐通报, 2025, 44(7): 2710-2719. |
| [5] | 邱明明, 杨萌, 李晓敏, 李盛斌. 水泥固化高填方黄土抗压强度特性及其影响因素[J]. 硅酸盐通报, 2025, 44(5): 1927-1938. |
| [6] | 魏贤华, 王得林, 李超, 钟海军, 郭龙龙. 粉煤灰基地质聚合物及含水率对固化土力学性能的影响[J]. 硅酸盐通报, 2025, 44(5): 1949-1956. |
| [7] | 安然, 蔡苏童, 张先伟, 高浩东, 姚淼, 刘魁. 基于单轴压缩与CT扫描的矿渣固化土细观裂隙及损伤模型研究[J]. 硅酸盐通报, 2025, 44(4): 1495-1503. |
| [8] | 刘彦浩, 刘路路, 刘涛, 张艳, 余刘成, 张顶飞, 战元喆. 硅灰-矿渣-电石渣协同固化黄泛区粉土力学性能与微观机理研究[J]. 硅酸盐通报, 2025, 44(4): 1513-1524. |
| [9] | 杜俊彪, 杜运兴, 周芬, 李艳秋, 史雄刚, 熊征. 工业废渣复合固化洗砂泥的强度及耐久性研究[J]. 硅酸盐通报, 2025, 44(4): 1525-1534. |
| [10] | 吴燕开, 许美玲, 杨椿茂, 王世鑫, 郝润民, 彭亚男. 海水侵蚀下复合固化剂改良淤泥质土的物理力学特性研究[J]. 硅酸盐通报, 2025, 44(4): 1535-1545. |
| [11] | 陈建华, 戴自立. 干燥环境下膨润土-纤维改良固化土的裂隙发育特征和强度劣化机理研究[J]. 硅酸盐通报, 2025, 44(3): 1170-1181. |
| [12] | 加瑞, 楚振兴. 地质聚合物加固软土的研究现状与进展[J]. 硅酸盐通报, 2025, 44(2): 490-500. |
| [13] | 关宏信, 张海翔, 杨海荣, 杨飞, 郑天一. 水泥生物酶复合固化红砂岩土的力学与耐久性能[J]. 硅酸盐通报, 2025, 44(2): 765-773. |
| [14] | 代恒军, 吴光雄, 李海峰, 周薛, 章荣军. 水泥协同工业固废固化流态土工作性能研究[J]. 硅酸盐通报, 2025, 44(12): 4492-4502. |
| [15] | 袁慧慧, 邓加鑫, 虞犇, 张晓翔, 顾磊, 杨建辉, 韩双. 基于神经网络的固废胶凝材料固化土性能预测与优化[J]. 硅酸盐通报, 2025, 44(10): 3761-3772. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||