[1] 许 福, 蒋川梓, 张书经, 等. 碱激发矿渣固化土压平衡盾构渣土的试验研究[J]. 地下空间与工程学报, 2022, 18(3): 849-859. XU F, JIANG C Z, ZHANG S J, et al. Experimental study on alkali activated slag solidification of earth pressure balance shield muck[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(3): 849-859 (in Chinese). [2] 郭卫社, 王百泉, 李沿宗, 等. 盾构渣土无害化处理、资源化利用现状与展望[J]. 隧道建设(中英文), 2020, 40(8): 1101-1112. GUO W S, WANG B Q, LI Y Z, et al. Status quo and prospect of harmless disposal and Reclamation of shield muck in China[J]. Tunnel Construction, 2020, 40(8): 1101-1112 (in Chinese). [3] 付智勇, 陈文强, 唐伟雄, 等. 基于CEEMD-RF模型的渣土边坡地下水埋深预测[J]. 人民长江, 2020, 51(1): 141-148. FU Z Y, CHEN W Q, TANG W X, et al. Prediction of groundwater depth in residue slope with CEEMD-RF model based on phase space reconstruction[J]. Yangtze River, 2020, 51(1): 141-148 (in Chinese). [4] 肖慈宇, 张海燕, 詹建潮, 等. 渣土余泥免烧轻质高强陶粒的制备及应用[J]. 硅酸盐通报, 2025, 44(4): 1428-1437. XIAO C Y, ZHANG H Y, ZHAN J C, et al. Preparation and application of non-sintered lightweight and high-strength ceramsite from residual clay of waste soil[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(4): 1428-1437 (in Chinese). [5] 陈 新, 徐 涛, 李 可, 等. 深圳市开发建设项目弃土管理现状与对策[J]. 中国水土保持, 2014(12): 22-24. CHEN X, XU T, LI K, et al. Present situation and countermeasures of waste soil management in Shenzhen development and construction projects[J]. Soil and Water Conservation in China, 2014(12): 22-24 (in Chinese). [6] 骆展鹏, 熊春林, 韩泽军, 等. 矿渣-粉煤灰-玻璃粉复合固化盾构土力学性能及固化机制[J]. 硅酸盐通报, 2025, 44(5): 1803-1812. LUO Z P, XIONG C L, HAN Z J, et al. Mechanical properties and solidification mechanism of slag-fly ash-glass powder composite solidified shield soil[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(5): 1803-1812 (in Chinese). [7] 刘旭东. 预拌流态固化土技术在地下综合管廊基槽回填工程中的应用[J]. 建筑技术开发, 2018, 45(4): 61-62. LIU X D. Application of ready-mixed fluid stabilized soil technique in foundation trench backfill construction of underground comprehensive pipe[J]. Building Technology Development, 2018, 45(4): 61-62 (in Chinese). [8] LING T C, KALIYAVARADHAN S K, POON C S. Global perspective on application of controlled low-strength material (CLSM) for trench backfilling: an overview[J]. Construction and Building Materials, 2018, 158: 535-548. [9] DU L, ARELLANO M A M, FOLLIARD K J, et al. Rapid-setting CLSM for bridge approach repair: a case study[J]. ACI Materials Journal, 2006, 103(5): 312. [10] XU F, WEI H, QIAN W X, et al. Composite alkaline activator on cemented soil: multiple tests and mechanism analyses[J]. Construction and Building Materials, 2018, 188: 433-443. [11] 周永祥, 刘 倩, 王祖琦, 等. 流态固化土用无熟料胶凝材料的性能研究[J]. 硅酸盐通报, 2022, 41(10): 3548-3555. ZHOU Y X, LIU Q, WANG Z Q, et al. Properties of cementitious materials without clinker for fluid solidified soil[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(10): 3548-3555 (in Chinese). [12] 张金喜, 苏 词, 王 超, 等. 道路基础设施建设中的节能减排问题及技术综述[J]. 北京工业大学学报, 2022, 48(3): 243-260. ZHANG J X, SU C, WANG C, et al. Review of energy-saving and emission-reduction issues and technologies in the construction of road infrastructure[J]. Journal of Beijing University of Technology, 2022, 48(3): 243-260 (in Chinese). [13] ABDALQADER A F, JIN F, AL-TABBAA A. Development of greener alkali-activated cement: utilisation of sodium carbonate for activating slag and fly ash mixtures[J]. Journal of Cleaner Production, 2016, 113: 66-75. [14] CABEZA L F, BARRENECHE C, MIRÓ L, et al. Low carbon and low embodied energy materials in buildings: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 23: 536-542. [15] SCRIVENER K L, KIRKPATRICK R J. Innovation in use and research on cementitious material[J]. Cement and Concrete Research, 2008, 38(2): 128-136. [16] 丁建文, 洪振舜, 刘松玉. 疏浚淤泥流动固化处理与流动性试验研究[J]. 岩土力学, 2011, 32(增刊1): 280-284. DING J W, HONG Z S, LIU S Y. Study of flow-solidification method and fluidity test of dredged clays[J]. Rock and Soil Mechanics, 2011, 32(supplement 1): 280-284 (in Chinese). [17] 再 协. 固体废弃物综合利用市场将成为发展趋势[J]. 中国资源综合利用, 2015, 33(12): 29. ZAI X. The comprehensive utilization market of solid waste will become the development trend[J]. China Resources Comprehensive Utilization, 2015, 33(12): 29 (in Chinese). [18] 刘宪敏. 我国工业固废综合利用现状及进展分析[J]. 资源节约与环保, 2021(2): 95-96. LIU X M. Analysis on the present situation and progress of comprehensive utilization of industrial solid waste in China[J]. Resources Economization & Environmental Protection, 2021(2): 95-96 (in Chinese). [19] CHOUDHARY J, KUMAR B, GUPTA A. Utilization of solid waste materials as alternative fillers in asphalt mixes: a review[J]. Construction and Building Materials, 2020, 234: 117271. [20] 丁建文, 张 帅, 洪振舜, 等. 水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J]. 岩土力学, 2010, 31(9): 2817-2822. DING J W, ZHANG S, HONG Z S, et al. Experimental study of solidification of dredged clays with high water content by adding cement and phosphogypsum synchronously[J]. Rock and Soil Mechanics, 2010, 31(9): 2817-2822 (in Chinese). [21] 易耀林, 卿学文, 庄 焱, 等. 粒化高炉矿渣微粉在软土固化中的应用及其加固机理[J]. 岩土工程学报, 2013, 35(增刊2): 829-833. YI Y L, QING X W, ZHUANG Y, et al. Utilization of GGBS in stabilization of soft soils and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(supplement 2): 829-833 (in Chinese). [22] KITAZUME M, TERASHI M. Design of improved ground by the deep mixing method[J]. The Deep Mixing Method, 2013: 303-305. [23] 邵 俐, 刘松玉, 杜广印, 等. 水泥粉煤灰加固有机质土的试验研究[J]. 工程地质学报, 2008, 16(3): 121-127. SHAO L, LIU S Y, DU G Y, et al. Experimental study on improvement of organic soil with cement and fly-ash[J]. Journal of Engineering Geology, 2008, 16(3): 121-127 (in Chinese). [24] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical test methods: GB/T 50123—2019[S]. Beijing: China Plan Publishing House, 2019 (in Chinese). [25] Japan Road Corporation. Test method for aerated mortar and aerated mortar: JHSA313—1992[S]. 1992. [26] 赵庆新, 才鸿伟, 安 赛, 等. 水泥-磨细矿渣固化滨海盐渍土强度及机理[J]. 建筑材料学报, 2020, 23(3): 625-630. ZHAO Q X, CAI H W, AN S, et al. Strength and mechanism of stabilized coastal saline soil by cement and fine slag[J]. Journal of Building Materials, 2020, 23(3): 625-630 (in Chinese). [27] XU Z H, ZHANG R J, XIAO H, et al. Study on formula and mechanism of chemical admixtures for slurry-like mud treated by physicochemical combined method[J]. Construction and Building Materials, 2024, 419: 135434. [28] 黄 新, 胡同安. 水泥-废石膏加固软土的试验研究[J]. 岩土工程学报, 1998, 20(5): 72-76. HUANG X, HU T A. On stabilization of soft soil with waste gypsum and cement[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(5): 72-76 (in Chinese). [29] 桂 跃, 王其合, 张 庆. 工业废料固化高含水率疏浚淤泥强度特性分析[J]. 武汉工程大学学报, 2012, 34(1): 36-42. GUI Y, WANG Q H, ZHANG Q. Analysis on strength characteristics of stabilized high water content dredged sludge with industrial wastes[J]. Journal of Wuhan Institute of Technology, 2012, 34(1): 36-42 (in Chinese). [30] 李建东, 王 旭, 张延杰, 等. F1离子固化剂加固试验黄土机理及强度特性研究[J]. 材料导报, 2021, 35(6): 6100-6106. LI J D, WANG X, ZHANG Y J, et al. A mechanism study of trial loess reinforced by F1 ionic soil stabilizer on curing mechanism and strength characteristics[J]. Materials Reports, 2021, 35(6): 6100-6106 (in Chinese). [31] LUNEV A A, KATSARSKII R S. Influence of water content and degree of compaction on the mechanical properties of soils of various geneses[J]. Soil Mechanics and Foundation Engineering, 2022, 59(5): 417-421. [32] KITAZUME M, HAYANO K. Strength properties and variance of cement-treated ground using the pneumatic flow mixing method[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2007, 11(1): 21-26. |