硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (2): 490-500.DOI: 10.16552/j.cnki.issn1001-1625.2024.1105
加瑞1,2, 楚振兴1,2
收稿日期:
2024-09-14
修订日期:
2024-10-15
出版日期:
2025-02-15
发布日期:
2025-02-28
作者简介:
加 瑞(1982—),男,博士,副教授。主要从事土力学和岩土工程的研究。E-mail:jiarui@tju.edu.cn
基金资助:
JIA Rui1,2, CHU Zhenxing1,2
Received:
2024-09-14
Revised:
2024-10-15
Published:
2025-02-15
Online:
2025-02-28
摘要: 地质聚合物被认为是21世纪有可能大量取代水泥的绿色胶凝材料。本文综述了地质聚合物在软土加固方面的研究现状与进展:介绍了目前用于软土加固的地质聚合物前驱体和激发剂;归纳了地质聚合物加固软土的原理和机理;根据室内单元试验结果分析了地质聚合物固化土的变形和强度特性;讨论了地质聚合物固化土的渗透性和耐久性;总结了地质聚合物加固软土的环境影响和工程应用。与水泥固化土相比,在相同掺量下地质聚合物固化土的力学性能更好,且其CO2排放量较低,因此地质聚合物可以替代水泥用于加固软土。将来可进一步研发性能更好的地质聚合物前驱体及绿色激发剂,并进一步研究不同类型地质聚合物固化土的宏微观力学特性。
中图分类号:
加瑞, 楚振兴. 地质聚合物加固软土的研究现状与进展[J]. 硅酸盐通报, 2025, 44(2): 490-500.
JIA Rui, CHU Zhenxing. Research Status and Progress on Solidifying Soft Clay by Geopolymer[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 490-500.
[1] 中华人民共和国建设部. 岩土工程勘察规范: GB 50021—2001[S]. 北京: 中国建筑工业出版社, 2004. Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021—2001[S]. Beijing: China Architecture & Building Press, 2004 (in Chinese). [2] 龚晓南. 地基处理手册[M]. 3版. 北京: 中国建筑工业出版社, 2008. GONG X N. Ground improvement handbook[M]. 3rd ed. Beijing: China Architecture & Building Press, 2008 (in Chinese). [3] 龚晓南. 地基处理技术发展与展望[M]. 北京: 中国水利水电出版社, 2004. GONG X N. Development and prospect of ground improvement techniques[M]. Beijing: China Water & Power Press, 2004 (in Chinese). [4] ANDREW R M. Global CO2 emissions from cement production, 1928—2017[J]. Earth System Science Data, 2018, 10(4): 2213-2239. [5] DAVIDOVITS J. Geopolymers and geopolymeric materials[J]. Journal of Thermal Analysis, 1989, 35(2): 429-441. [6] 吴小缓, 张 杨, 袁 鹏, 等. 地质聚合物的研究进展与应用[J]. 硅酸盐通报, 2016, 35(12): 4032-4037. WU X H, ZHANG Y, YUAN P, et al. Research progress and applications of geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4032-4037 (in Chinese). [7] 倪 文, 王 恩, 周 佳. 地质聚合物: 21世纪的绿色胶凝材料[J]. 新材料产业, 2003(6): 24-28. NI W, WANG E, ZHOU J. Geopolymer: green cementitious material in the 21st century[J]. Advanced Materials Industry, 2003(6): 24-28 (in Chinese). [8] RICHARDSON I G, BROUGH A R, GROVES G W, et al. The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) phase[J]. Cement and Concrete Research, 1994, 24(5): 813-829. [9] 王爱国, 王星尧, 孙道胜, 等. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 5-14. WANG A G, WANG X Y, SUN D S, et al. Research progress on setting and hardening of geopolymers and their control[J]. Materials Reports, 2021, 35(13): 5-14 (in Chinese). [10] YAGHOUBI M, ARULRAJAH A, HORPIBULSUK S. Engineering behaviour of a geopolymer-stabilised high-water content soft clay[J]. International Journal of Geosynthetics and Ground Engineering, 2022, 8(3): 45. [11] GUPTA S, KUMAR S. Mechanical and microstructural analysis of soft Kaolin clay stabilized by GGBS and dolomite-based geopolymer[J]. Construction and Building Materials, 2024, 421: 135702. [12] 俞家人, 陈永辉, 陈 庚, 等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报, 2020, 23(2): 364-371. YU J R, CHEN Y H, CHEN G, et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism[J]. Journal of Building Materials, 2020, 23(2): 364-371 (in Chinese). [13] SARGENT P, HUGHES P N, ROUAINIA M. A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing[J]. Soils and Foundations, 2016, 56(6): 1021-1034. [14] PHUMMIPHAN I, HORPIBULSUK S, RACHAN R, et al. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material[J]. Journal of Hazardous Materials, 2018, 341: 257-267. [15] PHETCHUAY C, HORPIBULSUK S, ARULRAJAH A, et al. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer[J]. Applied Clay Science, 2016, 127: 134-142. [16] 吴燕开, 胡晓士, 胡 锐, 等. 烧碱激发钢渣粉在淤泥质土中的试验研究[J]. 岩土工程学报, 2017, 39(12): 2187-2194. WU Y K, HU X S, HU R, et al. Experimental study on caustic soda-activated steel slag powder in muddy soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2187-2194 (in Chinese). [17] 王东星, 王宏伟, 邹维列, 等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3197-3205. WANG D X, WANG H W, ZOU W L, et al. Research on micro-mechanisms of dredged sludge solidified with alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(supplement 1): 3197-3205 (in Chinese). [18] MURMU A L, DHOLE N, PATEL A. Stabilisation of black cotton soil for subgrade application using fly ash geopolymer[J]. Road Materials and Pavement Design, 2020, 21(3): 867-885. [19] GHADIR P, RANJBAR N. Clayey soil stabilization using geopolymer and Portland cement[J]. Construction and Building Materials, 2018, 188: 361-371. [20] MIRAKI H, SHARIATMADARI N, GHADIR P, et al. Clayey soil stabilization using alkali-activated volcanic ash and slag[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 576-591. [21] ZHANG M, GUO H, EL-KORCHI T, et al. Experimental feasibility study of geopolymer as the next-generation soil stabilizer[J]. Construction and Building Materials, 2013, 47: 1468-1478. [22] GUO Q, WEI M L, WU H L, et al. Strength and micro-mechanism of MK-blended alkaline cement treated high plasticity clay[J]. Construction and Building Materials, 2020, 236: 117567. [23] 吴 俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655 (in Chinese). [24] YAGHOUBI M, ARULRAJAH A, DISFANI M M, et al. Effects of industrial by-product based geopolymers on the strength development of a soft soil[J]. Soils and Foundations, 2018, 58(3): 716-728. [25] SAMUEL R, PUPPALA A J, RADOVIC M. Sustainability benefits assessment of metakaolin-based geopolymer treatment of high plasticity clay[J]. Sustainability, 2020, 12(24): 10495. [26] YU J R, CHEN Y H, CHEN G, et al. Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization[J]. Engineering Geology, 2020, 264: 105316. [27] JIANG N J, DU Y J, LIU K. Durability of lightweight alkali-activated ground granulated blast furnace slag (GGBS) stabilized clayey soils subjected to sulfate attack[J]. Applied Clay Science, 2018, 161: 70-75. [28] ARULRAJAH A, YAGHOUBI M, DISFANI M M, et al. Evaluation of fly ash- and slag-based geopolymers for the improvement of a soft marine clay by deep soil mixing[J]. Soils and Foundations, 2018, 58(6): 1358-1370. [29] GUO H Z, ZHANG B F, DENG L L, et al. Preparation of high-performance silico-aluminophosphate geopolymers using fly ash and metakaolin as raw materials[J]. Applied Clay Science, 2021, 204: 106019. [30] SELLAMI M, BARRE M, TOUMI M. Synthesis, thermal properties and electrical conductivity of phosphoric acid-based geopolymer with metakaolin[J]. Applied Clay Science, 2019, 180: 105192. [31] 党永发, 李晓光. 酸激发提高钢渣、矿渣复合粉水硬活性的研究[J]. 中国粉体技术, 2006, 12(5): 16-18. DANG Y F, LI X G. Improvement of cementitous activation of composite powder made of steel slag and furnace slag with acid[J]. China Powder Science and Technology, 2006, 12(5): 16-18 (in Chinese). [32] 方旭彬, 李兆锋, 吴祥福, 等. 酸性激发剂激发钢渣替代部分水泥熟料的机理研究[J]. 混凝土, 2007(8): 49-51. FANG X B, LI Z F, WU X F, et al. Mechanism investigation of acid exciting steel slag substituting part cement clinker[J]. Concrete, 2007(8): 49-51 (in Chinese). [33] KHALE D, CHAUDHARY R. Mechanism of geopolymerization and factors influencing its development: a review[J]. Journal of Materials Science, 2007, 42(3): 729-746. [34] HUANG J X, KOGBARA R B, HARIHARAN N, et al. A state-of-the-art review of polymers used in soil stabilization[J]. Construction and Building Materials, 2021, 305: 124685. [35] CASTILLO H, COLLADO H, DROGUETT T, et al. State of the art of geopolymers: a review[J]. e-Polymers, 2022, 22(1): 108-124. [36] MATSIMBE J, DINKA M, OLUKANNI D, et al. Geopolymer: a systematic review of methodologies[J]. Materials, 2022, 15(19): 6852. [37] ZAREECHIAN M, SIAD H, LACHEMI M, et al. Advancements in cleaner production of one-part geopolymers: a comprehensive review of mechanical properties, durability, and microstructure[J]. Construction and Building Materials, 2023, 409: 133876. [38] YAO J L, QIU H J, HE H, et al. Application of a soft soil stabilized by composite geopolymer[J]. Journal of Performance of Constructed Facilities, 2021, 35(4): 04021018. [39] CORRÊA-SILVA M, CRISTELO N, ROUAINIA M, et al. Constitutive behaviour of a clay stabilised with alkali-activated cement based on blast furnace slag[J]. Sustainability, 2022, 14(21): 13736. [40] 马冬冬, 马芹永, 黄 坤, 等. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究[J]. 岩土工程学报, 2021, 43(3): 572-578. MA D D, MA Q Y, HUANG K, et al. Pore structure and dynamic mechanical properties of geopolymer cement soil based on nuclear magnetic resonance technique[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 572-578 (in Chinese). [41] CORRÊA-SILVA M, MIRANDA T, ROUAINIA M, et al. Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags[J]. Journal of Cleaner Production, 2020, 267: 122017. [42] LI J F, SHAN Y, NI P P, et al. Multiscale experimental analysis of marine clay stabilized with coal gangue-calcium carbide residue geopolymer[J]. Acta Geotechnica, 2023, 18(11): 5921-5939. [43] MOZUMDER R A, LASKAR A I. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using Artificial Neural Network[J]. Computers and Geotechnics, 2015, 69: 291-300. [44] CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation[J]. Acta Geotechnica, 2013, 8(4): 395-405. [45] CRISTELO N, GLENDINNING S, FERNANDES L, et al. Effect of calcium content on soil stabilisation with alkaline activation[J]. Construction and Building Materials, 2012, 29: 167-174. [46] ODEH N A, AL-RKABY A H J. Strength, durability, and microstructures characterization of sustainable geopolymer improved clayey soil[J]. Case Studies in Construction Materials, 2022, 16: e00988. [47] ALSAFI S, FARZADNIA N, ASADI A, et al. Collapsibility potential of gypseous soil stabilized with fly ash geopolymer; characterization and assessment[J]. Construction and Building Materials, 2017, 137: 390-409. [48] LANG L, CHEN B, LI N. Utilization of lime/carbide slag-activated ground granulated blast-furnace slag for dredged sludge stabilization[J]. Marine Georesources & Geotechnology, 2021, 39(6): 659-669. [49] MURMU A L, JAIN A, PATEL A. Mechanical properties of alkali activated fly ash geopolymer stabilized expansive clay[J]. KSCE Journal of Civil Engineering, 2019, 23(9): 3875-3888. [50] CHEN K Y, WU D Z, ZHANG Z L, et al. Modeling and optimization of fly ash-slag-based geopolymer using response surface method and its application in soft soil stabilization[J]. Construction and Building Materials, 2022, 315: 125723. [51] ABDULLAH H H, SHAHIN M A, WALSKE M L. Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag[J]. Soils and Foundations, 2019, 59(6): 1906-1920. [52] 孙秀丽, 童 琦, 刘文化, 等. 碱激发粉煤灰和矿粉改性疏浚淤泥力学特性及显微结构研究[J]. 大连理工大学学报, 2017, 57(6): 622-628. SUN X L, TONG Q, LIU W H, et al. Study of microstructure and mechanical properties of dredged silt solidified using fly ash and slag stimulated by alkali[J]. Journal of Dalian University of Technology, 2017, 57(6): 622-628 (in Chinese). [53] THOMAS A, TRIPATHI R K, YADU L K. A laboratory investigation of soil stabilization using enzyme and alkali-activated ground granulated blast-furnace slag[J]. Arabian Journal for Science and Engineering, 2018, 43(10): 5193-5202. [54] NOOLU V, MALLIKARJUNA RAO G, SUDHEER KUMAR REDDY B, et al. Strength and durability characteristics of GGBS geopolymer stabilized black cotton soil[J]. Materials Today: Proceedings, 2021, 43: 2373-2376. [55] CORRÊA-SILVA M, ARAÚJO N, CRISTELO N, et al. Improvement of a clayey soil with alkali activated low-calcium fly ash for transport infrastructures applications[J]. Road Materials and Pavement Design, 2019, 20(8): 1912-1926. [56] SILVA M C A. Stress-strain response of soft soils stabilised with alkali activated industrial by-products[D]. Portugal: Universidade do Minho, Portugal, 2022: 132-133. [57] DUNGCA J R. Vertical permeability of dredged soil stabilized with fly-ash based geopolymer for road embankment[J]. International Journal of GEOMATE, 2019, 17(59): 8-14. [58] TEMUUJIN J, MINJIGMAA A, LEE M, et al. Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions[J]. Cement and Concrete Composites, 2011, 33(10): 1086-1091. [59] RIVERA J F, OROBIO A, CRISTELO N, et al. Fly ash-based geopolymer as A4 type soil stabiliser[J]. Transportation Geotechnics, 2020, 25: 100409. [60] 陈忠清, 朱泽威, 吕 越. 粉煤灰基地聚物加固土的强度及抗冻融性能试验研究[J]. 水文地质工程地质, 2022, 49(4): 100-108. CHEN Z Q, ZHU Z W, LYU Y. Laboratory investigation on the strength and freezing-thawing resistance of fly ash based geopolymer stabilized soil[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 100-108 (in Chinese). [61] SAHOO S, PRASAD SINGH S. Strength and durability properties of expansive soil treated with geopolymer and conventional stabilizers[J]. Construction and Building Materials, 2022, 328: 127078. [62] 孙家瑛, 王志新, 戴亚英, 等. 地聚合物灌浆材料在公路软土地基处理中的应用[J]. 铁道科学与工程学报, 2005, 2(2): 62-65. SUN J Y, WANG Z X, DAI Y Y, et al. The application of geopolymer grouting material in the treatment of road soft soil[J]. Journal of Railway Science and Engineering, 2005, 2(2): 62-65 (in Chinese). [63] 龚鲁义. 英达地聚物注浆技术在常州成功应用[J]. 市政技术, 2020, 38(2): 5-7. GONG L Y. Freetech polymer grouting technology has been successfully applied in Changzhou[J]. Municipal Engineering Technology, 2020, 38(2): 5-7 (in Chinese). [64] 陈忠清, 丁佩思, 吕 越, 等. 炉渣-粉煤灰地聚合物固化铜污染土[J]. 有色金属工程, 2023, 13(9): 161-169. CHEN Z Q, DING P S, LYU Y, et al. Solidification of copper contaminated soil by fly ash based geopolymer with bottom ash[J]. Nonferrous Metals Engineering, 2023, 13(9): 161-169 (in Chinese). [65] 王均溢, 仲伟仁, 杨 溢, 等. 地质聚合物复合材料固化稳定化铬污染土[J]. 广州化工, 2023, 51(22): 84-86. WANG J Y, ZHONG W R, YANG Y, et al. Study on solidifying and stabilizing chromium-contaminated soil with geopolymer composite[J]. Guangzhou Chemical Industry, 2023, 51(22): 84-86 (in Chinese). [66] 高 绮, 刘 霖, 宋向阳, 等. 矿渣地质聚合物增强水泥固化Zn2+及苯酚污染土强度研究[J]. 内蒙古工业大学学报(自然科学版), 2024, 43(1): 77-81. GAO Q, LIU L, SONG X Y, et al. Enhancing strength of cement solidified Zn2+ and phenol contaminated soil with slag geopolymer[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2024, 43(1): 77-81 (in Chinese). |
[1] | 薛璐韬, 李育彪, 吴晓勇, 李瑞, 孙旭超, 吴开振, 池汝安. 氟石膏水化活性改性试验研究[J]. 硅酸盐通报, 2025, 44(1): 223-230. |
[2] | 窦占双, 李晓民, 秦宏涛, 魏定邦, 武旭, 闫升, 张富强, 韩方元. 化学激发大掺量粉煤灰复合胶凝材料力学性能与水化机理研究[J]. 硅酸盐通报, 2025, 44(1): 243-252. |
[3] | 余金虎, 李强, 刘学应, 周曙光, 王超. 地质聚合物混凝土抗氯离子渗透性能研究进展[J]. 硅酸盐通报, 2024, 43(7): 2503-2513. |
[4] | 吴求刚, 赵恒, 刘威, 王新富, 王彦君, 何建国, 章梅, 朱孛. 自燃煤矸石基地质聚合物低强度注浆材料的制备及其微观分析[J]. 硅酸盐通报, 2024, 43(7): 2539-2547. |
[5] | 彭丽娟, 柯国军, 宋百姓, 蒋恬, 王文青. 废玻璃粉-偏高岭土地质聚合物胶砂的流动度和力学性能[J]. 硅酸盐通报, 2024, 43(6): 2168-2175. |
[6] | 曹启坤, 景昊星, 李豪. 基于响应曲面法的粉煤灰泡沫混凝土配合比优化[J]. 硅酸盐通报, 2024, 43(4): 1427-1435. |
[7] | 冷玲倻, 张鹏飞, 梁文文. 高温下玄武岩纤维增强地质聚合物混凝土的动态压缩力学行为[J]. 硅酸盐通报, 2024, 43(3): 914-921. |
[8] | 蒋明屾, 李飞, 周理安, 宁佳蕊, 张政. 碳酸钠、氢氧化钠与水玻璃复合激发对地聚物胶凝材料性能的影响[J]. 硅酸盐通报, 2024, 43(3): 929-937. |
[9] | 伍媛婷, 王媛晨, 王昭, 刘虎林, 王巍, 任思谦, 花春峰. 有机醇胺TEA-M-无机盐体系对固硫灰渣活性激发的影响[J]. 硅酸盐通报, 2024, 43(2): 572-583. |
[10] | 刘博研, 彭新盼, 郭昭呈, 刘琦, 范丽花, 宋学锋. 地质聚合物在污水治理领域中的研究进展[J]. 硅酸盐通报, 2024, 43(11): 4083-4098. |
[11] | 万小梅, 王博世, 孙忠涛, 张东方. 碱激发矿渣液相环境中钢筋钝化膜形成及破坏规律[J]. 硅酸盐通报, 2024, 43(10): 3607-3614. |
[12] | 陈立保, 刘光严, 金林森, 穆松, 王涛, 汤金辉. 碳化及氯盐侵蚀条件下锌牺牲阳极对钢筋保护行为研究[J]. 硅酸盐通报, 2024, 43(1): 113-120. |
[13] | 潘荣祥, 杨敏, 袁宏. 减水剂对赤泥-粉煤灰基地质聚合物性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3212-3220. |
[14] | 张顶飞, 吕启航, 张鹏, 朱珍, 陈向南, 曹吉昌. 基于响应面法的粉煤灰-电石渣地质聚合物固化软土试验研究[J]. 硅酸盐通报, 2023, 42(8): 2821-2829. |
[15] | 孙楚函, 王洪磊, 周新贵. 前驱体转化法制备超高温陶瓷粉体研究进展[J]. 硅酸盐通报, 2023, 42(8): 2865-2880. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 58
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||