硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 336-345.DOI: 10.16552/j.cnki.issn1001-1625.2025.0758
岳鹏飞1(
), 郭思标1, 丁秀娟1, 王玉松1, 王大周1, 胡悦1, 张蓉蓉2(
), 章纲2, 丁金孟2
收稿日期:2025-07-30
修订日期:2025-09-03
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
张蓉蓉,博士,副教授。E-mail:zrrah187@163.com
作者简介:岳鹏飞(1994—),男,高级工程师。主要从事房地产开发及建筑施工研究。E-mail:975777165@qq.com
基金资助:
YUE Pengfei1(
), GUO Sibiao1, DING Xiujuan1, WANG Yusong1, WANG Dazhou1, HU Yue1, ZHANG Rongrong2(
), ZHANG Gang2, DING Jinmeng2
Received:2025-07-30
Revised:2025-09-03
Published:2026-01-20
Online:2026-02-10
摘要:
为解决路基加固工程中传统胶凝材料造价高、生产过程排碳量高的问题,并实现工业固废资源化和高值化利用,以氢氧化钠作为碱激发剂,制备粉煤灰-矿渣-赤泥三元复合胶凝材料,通过无侧限抗压强度(UCS)试验,研究固废基胶凝材料配合比和氢氧化钠掺量对固化土7 d UCS的影响,并利用SPSS软件对UCS结果进行相关性分析,结合SEM-EDS和XRD手段探讨固废基胶凝材料对土体的固化作用机理。结果表明:不同配合比的固化土试样呈现出劈裂破坏、剪切破坏及拉剪复合破坏三种类型;固废基原材料和碱激发剂间的交互作用对固化土UCS有显著影响,当粉煤灰、矿渣、赤泥质量比为1∶3∶1时,固化土7 d UCS最高,可达1.795 MPa;氢氧化钠掺量与UCS之间存在显著的正相关性,相关系数达到0.76;随着固化土内部水化反应的进行,大量生成的水化硅酸钙、水化铝酸钙凝胶相包裹土颗粒并填充颗粒间孔隙,从而显著提升固化土的强度;随着氢氧化钠掺量的增加,其对水化反应的促进作用更为显著,固化土内部微孔和小孔之和的占比逐渐增加,中孔和大孔之和的占比则逐渐降低。
中图分类号:
岳鹏飞, 郭思标, 丁秀娟, 王玉松, 王大周, 胡悦, 张蓉蓉, 章纲, 丁金孟. 粉煤灰-矿渣-赤泥基胶凝材料固化土强度和微观机理研究[J]. 硅酸盐通报, 2026, 45(1): 336-345.
YUE Pengfei, GUO Sibiao, DING Xiujuan, WANG Yusong, WANG Dazhou, HU Yue, ZHANG Rongrong, ZHANG Gang, DING Jinmeng. Strength and Microscopic Mechanism of Fly Ash-Slag-Red Mud-Based Cementitious Materials Solidified Soil[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 336-345.
| Parameter | Value |
|---|---|
| Natural water content/% | 26.2 |
| Specific gravity of soil particle | 2.7 |
| Maximum dry density/(g·cm-3) | 1.7 |
| Liquid limit/% | 42.5 |
| Plastic limit/% | 19.3 |
| Plasticity index | 23.2 |
| Optimum moisture content/% | 18.0 |
表1 原状土物理性能指标
Table 1 Physical performance index of undisturbed soil
| Parameter | Value |
|---|---|
| Natural water content/% | 26.2 |
| Specific gravity of soil particle | 2.7 |
| Maximum dry density/(g·cm-3) | 1.7 |
| Liquid limit/% | 42.5 |
| Plastic limit/% | 19.3 |
| Plasticity index | 23.2 |
| Optimum moisture content/% | 18.0 |
| Matreial | Mass fraction/% | |||
|---|---|---|---|---|
| CaO | SiO2 | SO3 | Al2O3 | |
| Fly ash | 5.6 | 45.1 | 2.1 | 24.2 |
| Slag | 39.3 | 33.1 | 1.9 | 15.0 |
| Red mud | 1.7 | 15.1 | 0.2 | 26.8 |
表2 粉煤灰、矿渣和赤泥的主要化学成分
Table 2 Main chemical composition of fly ash, slag and red mud
| Matreial | Mass fraction/% | |||
|---|---|---|---|---|
| CaO | SiO2 | SO3 | Al2O3 | |
| Fly ash | 5.6 | 45.1 | 2.1 | 24.2 |
| Slag | 39.3 | 33.1 | 1.9 | 15.0 |
| Red mud | 1.7 | 15.1 | 0.2 | 26.8 |
| Specimen No. | Mass fraction/% | NaOH content/% | ||
|---|---|---|---|---|
| Fly ash | Slag | Red mud | ||
| 15FA-55SL-30RM | 15 | 55 | 30 | 0,4,8 |
| 15FA-60SL-25RM | 15 | 60 | 25 | 0,4,8 |
| 20FA-50SL-30RM | 20 | 50 | 30 | 0,4,8 |
| 20FA-55SL-25RM | 20 | 55 | 25 | 0,4,8 |
| 20FA-60SL-20RM | 20 | 60 | 20 | 0,4,8 |
| 25FA-45SL-30RM | 25 | 45 | 30 | 0,4,8 |
| 25FA-50SL-25RM | 25 | 50 | 25 | 0,4,8 |
| 25FA-55SL-20RM | 25 | 55 | 20 | 0,4,8 |
| 25FA-60SL-15RM | 25 | 60 | 15 | 0,4,8 |
| 30FA-45SL-25RM | 30 | 45 | 25 | 0,4,8 |
| 30FA-50SL-20RM | 30 | 50 | 20 | 0,4,8 |
| 30FA-55SL-15RM | 30 | 55 | 15 | 0,4,8 |
| 30FA-60SL-10RM | 30 | 60 | 10 | 0,4,8 |
表3 固化土试样配合比
Table 3 Mix proportion of solidified soil specimen
| Specimen No. | Mass fraction/% | NaOH content/% | ||
|---|---|---|---|---|
| Fly ash | Slag | Red mud | ||
| 15FA-55SL-30RM | 15 | 55 | 30 | 0,4,8 |
| 15FA-60SL-25RM | 15 | 60 | 25 | 0,4,8 |
| 20FA-50SL-30RM | 20 | 50 | 30 | 0,4,8 |
| 20FA-55SL-25RM | 20 | 55 | 25 | 0,4,8 |
| 20FA-60SL-20RM | 20 | 60 | 20 | 0,4,8 |
| 25FA-45SL-30RM | 25 | 45 | 30 | 0,4,8 |
| 25FA-50SL-25RM | 25 | 50 | 25 | 0,4,8 |
| 25FA-55SL-20RM | 25 | 55 | 20 | 0,4,8 |
| 25FA-60SL-15RM | 25 | 60 | 15 | 0,4,8 |
| 30FA-45SL-25RM | 30 | 45 | 25 | 0,4,8 |
| 30FA-50SL-20RM | 30 | 50 | 20 | 0,4,8 |
| 30FA-55SL-15RM | 30 | 55 | 15 | 0,4,8 |
| 30FA-60SL-10RM | 30 | 60 | 10 | 0,4,8 |
| [1] | 蔡光华, 李 纪, 王俊阁, 等. 剑麻纤维改良MgO-GGBS碳化粉质黏土物理力学性质与微观机制[J]. 林业工程学报, 2024, 9(5): 161-168. |
| CAI G H, LI J, WANG J G, et al. Physical and mechanical properties and microscopic mechanisms of MgO-GGBS carbonated silty clay improved by sisal fiber[J]. Journal of Forestry Engineering, 2024, 9(5): 161-168 (in Chinese). | |
| [2] | 张伟丽, 李明依, 李 俊, 等. 基于MICP技术的固化黏土抗侵蚀性能研究[J]. 安全与环境工程, 2025, 32(1): 201-210+232. |
| ZHANG W L, LI M Y, LI J, et al. Study on anti-erosion performance of clay reinforced by MICP technology[J]. Safety and Environmental Engineering, 2025, 32(1): 201-210+232 (in Chinese). | |
| [3] | 姜 鹏, 刘 林, 邹 仁, 等. 基于再生胶凝固化剂的季冻区路基固化土工程性能研究[J]. 铁道科学与工程学报, 2025, 22(2): 636-648. |
| JIANG P, LIU L, ZOU R, et al. Study on the performance of subgrade stabilized soil in seasonal freezing area based on reutilization cementitious curing agent[J]. Journal of Railway Science and Engineering, 2025, 22(2): 636-648 (in Chinese). | |
| [4] | 曾铭乐, 王志祥. 固废基道路地聚物注浆材料的组分优化及机理研究[J]. 硅酸盐通报, 2023, 42(8): 3033-3044. |
| ZENG M L, WANG Z X. Composition optimization and mechanism study of solid waste based road geopolymer grouting materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 3033-3044 (in Chinese). | |
| [5] | 司马笑情, 谢祥兵, 李广慧, 等. 多源固废制备掺合料的活性评价及水泥水化产物微观性能[J]. 硅酸盐通报, 2025, 44(3): 1069-1079. |
| SIMA X Q, XIE X B, LI G H, et al. Activity evaluation of multi-source solid waste preparation admixtures and microscopic properties of cement hydration products[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(3): 1069-1079 (in Chinese). | |
| [6] | 王利军, 郭育霞. 电石渣和硅灰协同提升β半水磷石膏充填胶凝材料性能研究[J]. 矿业研究与开发, 2025, 45(5): 49-56. |
| WANG L J, GUO Y X. Carbide slag and silica fume synergistically improving the performance of β-hemihydrate phosphogypsum backfill cementing material[J]. Mining Research and Development, 2025, 45(5): 49-56 (in Chinese). | |
| [7] |
刘彦浩, 刘路路, 刘 涛, 等. 硅灰-矿渣-电石渣协同固化黄泛区粉土力学性能与微观机理研究[J]. 硅酸盐通报, 2025, 44(4): 1513-1524.
DOI |
| LIU Y H, LIU L L, LIU T, et al. Mechanical properties and microscopic mechanisms of yellow floodplain silt solidified by silica fume-ground granulated blast furnace slag-carbide slag synergy[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(4): 1513-1524 (in Chinese). | |
| [8] | 张广田, 张艳佳, 贺光炜. 固废基胶凝材料水化特性及其掺量对C30混凝土力学性能影响研究[J]. 建筑结构, 2024, 54(23): 133-137+26. |
| ZHANG G T, ZHANG Y J, HE G W. Study on hydration characteristics of solid waste based cementitious materials and effect of its content on mechanical properties of C30 concrete[J]. Building Structure, 2024, 54(23): 133-137+26 (in Chinese). | |
| [9] | 秦 玲, 杨俊翼, 孙建伟, 等. 碱激发煤矸石-矿渣胶凝材料的制备及性能研究[J/OL]. 复合材料学报, 2025: 1-17. ( 2025-06-10) [ 2025-11-18]. https://doi.org/10.13801/j.cnki.fhclxb.20250609.011. |
| QIN L, YANG J Y, SUN J W, et al. Preparation and properties investigation of alkali-activated coal gangue-slag cementitious materials[J/OL]. Acta Materiae Compositae Sinica, 2025: 1-17 ( 2025-06-10) [ 2025-11-18]. https://doi.org/10.13801/j.cnki.fhclxb.20250609.011 (in Chinese). | |
| [10] | 凌一峰, 孙彦兵, 高发亮, 等. 基于固化机理的固废基土壤固化剂研究进展[J]. 武汉科技大学学报, 2025, 48(2): 81-91. |
| LING Y F, SUN Y B, GAO F L, et al. Research progress in solid waste-based soil curing agents based on curing mechanisms[J]. Journal of Wuhan University of Science and Technology, 2025, 48(2): 81-91 (in Chinese). | |
| [11] |
WU Y L, YANG J J, CHANG R Q. The design of ternary all-solid-waste binder for solidified soil and the mechanical properties, mechanism and environmental benefits of CGF solidified soil[J]. Journal of Cleaner Production, 2023, 429: 139439.
DOI URL |
| [12] |
HAMED E, DEMIRÖZ A. Optimization of geotechnical characteristics of clayey soils using fly ash and granulated blast furnace slag-based geopolymer[J]. Construction and Building Materials, 2024, 441: 137488.
DOI URL |
| [13] | 吴 俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. |
| WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655 (in Chinese). | |
| [14] | 岳秀鹏, 陈忠平, 董永泉, 等. 赤泥改性激发制备轻质土及固碱性能研究[J]. 公路, 2025, 70(5): 347-353. |
| YUE X P, CHEN Z P, DONG Y Q, et al. Study on preparation of light soil by red mud modification and its alkali fixation performance[J]. Highway, 2025, 70(5): 347-353 (in Chinese). | |
| [15] | 吴伟军, 张鲲鹏, 张 宁, 等. 赤泥复合固化剂固化粉土路用性能及其机理[J]. 建筑材料学报, 2025, 28(3): 227-235. |
| WU W J, ZHANG K P, ZHANG N, et al. Road performance of red mud composite solidification agent for solidified silt and its mechanism[J]. Journal of Building Materials, 2025, 28(3): 227-235 (in Chinese). | |
| [16] | 李 璇, 李召峰, 张昊龙, 等. 固废基胶凝材料固化盾构渣土的作用机理及路用性能研究[J/OL]. 工程科学与技术, 2024: 1-15 ( 2024-12-30) [ 2025-11-18]. https://link.cnki.net/urlid/51.1773.tb.20241227.1111.001. |
| LI X, LI Z F, ZHANG H L, et al. Study on the mechanism and road performance of solid waste-based cementitious material for curing shield tunnel muck[J/OL]. Advanced Engineering Sciences, 2024: 1-15 ( 2024-12-30) [ 2025-11-18]. https://link.cnki.net/urlid/51.1773.tb.20241227.1111.001 (in Chinese). | |
| [17] | 李钰佳, 段思宇, 吴 浩, 等. 赤泥-粉煤灰-电石渣复合胶凝材料的力学性能及水化机理[J]. 硅酸盐通报, 2025, 44(3): 1041-1049. |
| LI Y J, DUAN S Y, WU H, et al. Mechanical properties and hydration mechanism of red mud-fly ash-calcium carbide slag composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(3): 1041-1049 (in Chinese). | |
| [18] | 杨晓蕴, 林 城. 不同工业固废协同水泥固化盐渍土无侧限抗压强度及机理研究[J]. 公路, 2024, 69(10): 53-62. |
| YANG X Y, LIN C. Research on unconfined compressive strength and mechanism of different industrial solid wastes cooperate with cement to stabilize saline soil[J]. Highway, 2024, 69(10): 53-62 (in Chinese). | |
| [19] | 陈瑞敏, 简文彬, 张小芳, 等. CSFG-FR协同作用改良淤泥固化土性能试验研究[J]. 岩土力学, 2022, 43(4): 1020-1030. |
| CHEN R M, JIAN W B, ZHANG X F, et al. Experimental study on performance of sludge stabilized by CSFG-FR synergy[J]. Rock and Soil Mechanics, 2022, 43(4): 1020-1030 (in Chinese). | |
| [20] | 李 胜, 张红日, 王桂尧, 等. 基于响应面法的碱激发地聚物固化淤泥质土试验研究[J]. 硅酸盐通报, 2023, 42(12): 4438-4448. |
| LI S, ZHANG H R, WANG G Y, et al. Experimental study of alkali-activated geopolymer cured silty soil based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4438-4448 (in Chinese). | |
| [21] | 尤 忆, 向 杰. 水泥稳定土强度和微观结构的冻融损伤规律[J]. 硅酸盐通报, 2020, 39(2): 453-458. |
| YOU Y, XIANG J. Freeze-thaw damage laws of strength and microstructure of cement stabilized soils[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 453-458 (in Chinese). | |
| [22] |
HORPIBULSUK S, RACHAN R, RAKSACHON Y. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J]. Soils and Foundations, 2009, 49(1): 85-98.
DOI URL |
| [1] | 鲁依萍, 黄修林, 周紫晨, 刘仕琪. 聚丙烯酸丁酯-丙烯酸/水玻璃复合改性淤泥的流变特性与力学性能[J]. 硅酸盐通报, 2026, 45(1): 325-335. |
| [2] | 何兆益, 邹萌, 姚启文, 曹东伟, 秦猛. 高掺量磷石膏-水泥-固化剂稳定碎石基层材料的性能及强度形成机理[J]. 硅酸盐通报, 2026, 45(1): 346-358. |
| [3] | 姜德民, 胡思雨, 康红龙, 李御锦, 候宇翔. 改性处理对3D打印稻草纤维水泥基复合材料性能的影响[J]. 硅酸盐通报, 2026, 45(1): 47-57. |
| [4] | 张书峰, 王蕾, 徐世龙, 蔡佳成, 陈锦帆, 黄继志. 环氧树脂各组分对环氧树脂砂浆的性能影响研究[J]. 硅酸盐通报, 2025, 44(9): 3156-3167. |
| [5] | 金珊珊, 李响, 张扬, 刘鹏飞, 王志华, 李刘欢, 赵耀东. 沥灰比对水泥乳化沥青砂浆疲劳性能的影响[J]. 硅酸盐通报, 2025, 44(9): 3472-3482. |
| [6] | 李杰, 李顺凯, 赵欢, 曾秦威. 纳米TiO2改性发泡剂对泡沫混凝土性能的影响[J]. 硅酸盐通报, 2025, 44(8): 2839-2848. |
| [7] | 胡建林, 李智林, 周永祥, 冷发光, 杜修力. 生石灰激发高炉矿渣-粉煤灰地质聚合物固化土力学特性研究[J]. 硅酸盐通报, 2025, 44(8): 2912-2923. |
| [8] | 颜婉滢, 王东星, 聂利文. 全工业固废基高贝利特硫铝酸盐水泥熟料的制备与矿物形成微观机理[J]. 硅酸盐通报, 2025, 44(8): 2955-2964. |
| [9] | 赫明胜, 秦庆金, 高慧, 曲春雨, 秦永, 房奎圳, 郝建帅. 减水剂对镁渣-粉煤灰基流态固化土流变性及强度的影响[J]. 硅酸盐通报, 2025, 44(7): 2710-2719. |
| [10] | 赵钰臣, 邢颖, 李伟, 郭琪. 疲劳荷载后螺栓连接的钢-混凝土组合界面摩擦性能研究[J]. 硅酸盐通报, 2025, 44(6): 2111-2120. |
| [11] | 邱明明, 杨萌, 李晓敏, 李盛斌. 水泥固化高填方黄土抗压强度特性及其影响因素[J]. 硅酸盐通报, 2025, 44(5): 1927-1938. |
| [12] | 魏贤华, 王得林, 李超, 钟海军, 郭龙龙. 粉煤灰基地质聚合物及含水率对固化土力学性能的影响[J]. 硅酸盐通报, 2025, 44(5): 1949-1956. |
| [13] | 任才富, 王栋民, 房奎圳, 王吉祥, 张信龙, 陈伟. 固废基注浆材料的性能与硬化机理研究[J]. 硅酸盐通报, 2025, 44(4): 1328-1336. |
| [14] | 安然, 蔡苏童, 张先伟, 高浩东, 姚淼, 刘魁. 基于单轴压缩与CT扫描的矿渣固化土细观裂隙及损伤模型研究[J]. 硅酸盐通报, 2025, 44(4): 1495-1503. |
| [15] | 刘彦浩, 刘路路, 刘涛, 张艳, 余刘成, 张顶飞, 战元喆. 硅灰-矿渣-电石渣协同固化黄泛区粉土力学性能与微观机理研究[J]. 硅酸盐通报, 2025, 44(4): 1513-1524. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||