硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 346-358.DOI: 10.16552/j.cnki.issn1001-1625.2025.0660
何兆益1(
), 邹萌2(
), 姚启文3, 曹东伟4, 秦猛2
收稿日期:2025-06-19
修订日期:2025-08-30
出版日期:2026-01-20
发布日期:2026-02-10
通信作者:
邹 萌,硕士研究生。E-mail:622220951078@mails.cqjtu.edu.cn
作者简介:何兆益(1965—),男,博士,教授。主要从事路面结构与新材料方面的研究。E-mail:hzyzwb@cqjtu.edu.cn
基金资助:
HE Zhaoyi1(
), ZOU Meng2(
), YAO Qiwen3, CAO Dongwei4, QIN Meng2
Received:2025-06-19
Revised:2025-08-30
Published:2026-01-20
Online:2026-02-10
摘要:
本文采用高掺量磷石膏搭配水泥、自研固化剂稳定级配碎石制备路面基层材料,研究不同水泥、磷石膏、固化剂掺量对基层材料各龄期无侧限抗压强度及路用性能的影响,结合XRD、FTIR、SEM-EDS等测试方法探讨材料的水化机制和微观特性,并测试其浸出毒性。结果表明,水泥与磷石膏的质量比增大会提升基层材料的力学性能,且使用自研地聚物固化剂替代20%(质量分数,下同)水泥后基层材料的力学性能会进一步增强。以7 d无侧限抗压强度为评价指标,结合实际工程需求,提出高掺量磷石膏-水泥-固化剂稳定碎石基层材料最优配合比:35%磷石膏+4%水泥+1%三元碱激发固化剂+60%级配碎石。相对未掺入固化剂对照组,最优配合比下基层材料7、28和60 d无侧限抗压强度分别提升了69.2%(达到6.6 MPa)、106.7%(达到9.3 MPa)和88.3%(达到11.3 MPa)。主要水化产物为水泥水化形成的水化硅酸钙(C-S-H)凝胶和钙矾石(AFt),碱性固化剂不仅激发了水泥活性,还与磷石膏中的Ca2+通过火山灰反应进一步生成C-S-H凝胶和水化硅(铝)酸钙(C-(A)-S-H)凝胶,二者共同为基层材料提供强度。基层材料中的F-、PO
中图分类号:
何兆益, 邹萌, 姚启文, 曹东伟, 秦猛. 高掺量磷石膏-水泥-固化剂稳定碎石基层材料的性能及强度形成机理[J]. 硅酸盐通报, 2026, 45(1): 346-358.
HE Zhaoyi, ZOU Meng, YAO Qiwen, CAO Dongwei, QIN Meng. Performance and Strength Formation Mechanism of High Dosage Phosphogypsum-Cement-Curing Agent Stabilized Crushed Stone Base Layer Material[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 346-358.
| Material | Mass fraction/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| SO3 | CaO | SiO2 | F | P2O5 | Al2O3 | Fe2O3 | Na2O | MgO | Other | |
| PG | 52.64 | 38.36 | 4.15 | 1.73 | 1.51 | 0.57 | 0.21 | 0.21 | 0.19 | 0.43 |
| Cement | 1.25 | 54.43 | 22.71 | — | — | 9.86 | 4.75 | 0.86 | 2.28 | 3.86 |
表1 磷石膏和水泥的化学组成
Table 1 Chemical composition of PG and cement
| Material | Mass fraction/% | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| SO3 | CaO | SiO2 | F | P2O5 | Al2O3 | Fe2O3 | Na2O | MgO | Other | |
| PG | 52.64 | 38.36 | 4.15 | 1.73 | 1.51 | 0.57 | 0.21 | 0.21 | 0.19 | 0.43 |
| Cement | 1.25 | 54.43 | 22.71 | — | — | 9.86 | 4.75 | 0.86 | 2.28 | 3.86 |
| Sieve aperture size/mm | 19.00 | 16.00 | 13.20 | 9.50 | 4.75 | 2.36 | 1.18 | 0.60 | 0.30 |
|---|---|---|---|---|---|---|---|---|---|
| Pass rate of each sieve aperture in gradation design/% | 100 | 90.5 | 81.0 | 65.5 | 40.0 | 24.8 | 14.5 | 8.0 | 1.5 |
表2 集料的级配设计
Table 2 Gradation design of aggregates
| Sieve aperture size/mm | 19.00 | 16.00 | 13.20 | 9.50 | 4.75 | 2.36 | 1.18 | 0.60 | 0.30 |
|---|---|---|---|---|---|---|---|---|---|
| Pass rate of each sieve aperture in gradation design/% | 100 | 90.5 | 81.0 | 65.5 | 40.0 | 24.8 | 14.5 | 8.0 | 1.5 |
| Number | Mass fraction/% | Cement-PG mass ratio | ||
|---|---|---|---|---|
| Graded crushed stone | Cement | PG | ||
| A1 | 80.0 | 5.0 | 15.0 | 1∶3 |
| A2 | 80.0 | 4.0 | 16.0 | 1∶4 |
| A3 | 80.0 | 3.3 | 16.7 | 1∶5 |
| A4 | 80.0 | 2.9 | 17.1 | 1∶6 |
| A5 | 80.0 | 2.5 | 17.5 | 1∶7 |
| A6 | 80.0 | 2.2 | 17.8 | 1∶8 |
| A7 | 80.0 | 2.0 | 18.0 | 1∶9 |
| A8 | 70.0 | 7.5 | 22.5 | 1∶3 |
| A9 | 70.0 | 6.0 | 24.0 | 1∶4 |
| A10 | 70.0 | 5.0 | 25.0 | 1∶5 |
| A11 | 70.0 | 4.3 | 25.7 | 1∶6 |
| A12 | 70.0 | 3.8 | 26.3 | 1∶7 |
| A13 | 70.0 | 3.3 | 26.7 | 1∶8 |
| A14 | 70.0 | 3.0 | 27.0 | 1∶9 |
| A15 | 60.0 | 10.0 | 30.0 | 1∶3 |
| A16 | 60.0 | 8.0 | 32.0 | 1∶4 |
| A17 | 60.0 | 6.7 | 33.3 | 1∶5 |
| A18 | 60.0 | 5.7 | 34.3 | 1∶6 |
| A19 | 60.0 | 5.0 | 35.0 | 1∶7 |
| A20 | 60.0 | 4.4 | 35.6 | 1∶8 |
| A21 | 60.0 | 4.0 | 36.0 | 1∶9 |
| A22 | 50.0 | 12.5 | 37.5 | 1∶3 |
| A23 | 50.0 | 10.0 | 40.0 | 1∶4 |
| A24 | 50.0 | 8.3 | 41.7 | 1∶5 |
| A25 | 50.0 | 7.1 | 42.9 | 1∶6 |
| A26 | 50.0 | 6.3 | 43.7 | 1∶7 |
| A27 | 50.0 | 5.6 | 44.4 | 1∶8 |
| A28 | 50.0 | 5.0 | 45.0 | 1∶9 |
表3 无固化剂高掺量磷石膏稳定碎石基层材料配合比
Table 3 Mix proportions of high dosage phosphogypsum stabilized crushed stone base layer material without curing agent
| Number | Mass fraction/% | Cement-PG mass ratio | ||
|---|---|---|---|---|
| Graded crushed stone | Cement | PG | ||
| A1 | 80.0 | 5.0 | 15.0 | 1∶3 |
| A2 | 80.0 | 4.0 | 16.0 | 1∶4 |
| A3 | 80.0 | 3.3 | 16.7 | 1∶5 |
| A4 | 80.0 | 2.9 | 17.1 | 1∶6 |
| A5 | 80.0 | 2.5 | 17.5 | 1∶7 |
| A6 | 80.0 | 2.2 | 17.8 | 1∶8 |
| A7 | 80.0 | 2.0 | 18.0 | 1∶9 |
| A8 | 70.0 | 7.5 | 22.5 | 1∶3 |
| A9 | 70.0 | 6.0 | 24.0 | 1∶4 |
| A10 | 70.0 | 5.0 | 25.0 | 1∶5 |
| A11 | 70.0 | 4.3 | 25.7 | 1∶6 |
| A12 | 70.0 | 3.8 | 26.3 | 1∶7 |
| A13 | 70.0 | 3.3 | 26.7 | 1∶8 |
| A14 | 70.0 | 3.0 | 27.0 | 1∶9 |
| A15 | 60.0 | 10.0 | 30.0 | 1∶3 |
| A16 | 60.0 | 8.0 | 32.0 | 1∶4 |
| A17 | 60.0 | 6.7 | 33.3 | 1∶5 |
| A18 | 60.0 | 5.7 | 34.3 | 1∶6 |
| A19 | 60.0 | 5.0 | 35.0 | 1∶7 |
| A20 | 60.0 | 4.4 | 35.6 | 1∶8 |
| A21 | 60.0 | 4.0 | 36.0 | 1∶9 |
| A22 | 50.0 | 12.5 | 37.5 | 1∶3 |
| A23 | 50.0 | 10.0 | 40.0 | 1∶4 |
| A24 | 50.0 | 8.3 | 41.7 | 1∶5 |
| A25 | 50.0 | 7.1 | 42.9 | 1∶6 |
| A26 | 50.0 | 6.3 | 43.7 | 1∶7 |
| A27 | 50.0 | 5.6 | 44.4 | 1∶8 |
| A28 | 50.0 | 5.0 | 45.0 | 1∶9 |
| Number | Curing agent type | Mass fraction/% | |||
|---|---|---|---|---|---|
| Graded crushed stone | Actual cement | Curing agent | PG | ||
| B0(control group) | — | 60.0 | 5.0 | 0 | 35.0 |
| B1 | CA1 | 60.0 | 4.0 | 1.0 | 35.0 |
| B2 | CA1 | 60.0 | 3.0 | 2.0 | 35.0 |
| B3 | CA1 | 60.0 | 2.0 | 3.0 | 35.0 |
| B4 | CA1 | 60.0 | 1.0 | 4.0 | 35.0 |
| B5 | CA1 | 60.0 | 0.0 | 5.0 | 35.0 |
| B6 | CA2 | 60.0 | 4.0 | 1.0 | 35.0 |
| B7 | CA2 | 60.0 | 3.0 | 2.0 | 35.0 |
| B8 | CA2 | 60.0 | 2.0 | 3.0 | 35.0 |
| B9 | CA2 | 60.0 | 1.0 | 4.0 | 35.0 |
| B10 | CA2 | 60.0 | 0.0 | 5.0 | 35.0 |
表4 加固化剂的高掺量磷石膏稳定碎石基层材料配合比
Table 4 Mix proportion of high dosage phosphogypsum stabilized crushed stone base layer material with curing agent
| Number | Curing agent type | Mass fraction/% | |||
|---|---|---|---|---|---|
| Graded crushed stone | Actual cement | Curing agent | PG | ||
| B0(control group) | — | 60.0 | 5.0 | 0 | 35.0 |
| B1 | CA1 | 60.0 | 4.0 | 1.0 | 35.0 |
| B2 | CA1 | 60.0 | 3.0 | 2.0 | 35.0 |
| B3 | CA1 | 60.0 | 2.0 | 3.0 | 35.0 |
| B4 | CA1 | 60.0 | 1.0 | 4.0 | 35.0 |
| B5 | CA1 | 60.0 | 0.0 | 5.0 | 35.0 |
| B6 | CA2 | 60.0 | 4.0 | 1.0 | 35.0 |
| B7 | CA2 | 60.0 | 3.0 | 2.0 | 35.0 |
| B8 | CA2 | 60.0 | 2.0 | 3.0 | 35.0 |
| B9 | CA2 | 60.0 | 1.0 | 4.0 | 35.0 |
| B10 | CA2 | 60.0 | 0.0 | 5.0 | 35.0 |
| Number | Optimum water content/% | Maximum dry density/(g·cm-3) |
|---|---|---|
| A1 | 7.08 | 2.245 |
| A2 | 7.45 | 2.233 |
| A3 | 7.72 | 2.217 |
| A4 | 7.93 | 2.209 |
| A5 | 8.21 | 2.201 |
| A6 | 8.52 | 2.197 |
| A7 | 8.69 | 2.191 |
| A8 | 9.54 | 2.154 |
| A9 | 9.67 | 2.135 |
| A10 | 9.81 | 2.118 |
| A11 | 10.07 | 2.101 |
| A12 | 10.23 | 2.087 |
| A13 | 10.43 | 2.069 |
| A14 | 10.60 | 2.053 |
| A15 | 11.33 | 1.989 |
| A16 | 11.60 | 1.976 |
| A17 | 11.94 | 1.959 |
| A18 | 12.20 | 1.948 |
| A19 | 12.37 | 1.941 |
| A20 | 12.49 | 1.926 |
| A21 | 12.62 | 1.923 |
| A22 | 13.68 | 1.804 |
| A23 | 13.88 | 1.782 |
| A24 | 14.01 | 1.760 |
| A25 | 14.25 | 1.741 |
| A26 | 14.48 | 1.728 |
| A27 | 14.60 | 1.723 |
| A28 | 14.75 | 1.712 |
| B1 | 11.71 | 2.077 |
| B2 | 11.67 | 2.080 |
| B3 | 11.59 | 2.086 |
| B4 | 11.55 | 2.091 |
| B5 | 11.48 | 2.099 |
| B6 | 11.74 | 2.073 |
| B7 | 11.68 | 2.079 |
| B8 | 11.63 | 2.083 |
| B9 | 11.58 | 2.086 |
| B10 | 11.51 | 2.095 |
表5 试件击实试验结果
Table 5 Proctor compaction test results of samples
| Number | Optimum water content/% | Maximum dry density/(g·cm-3) |
|---|---|---|
| A1 | 7.08 | 2.245 |
| A2 | 7.45 | 2.233 |
| A3 | 7.72 | 2.217 |
| A4 | 7.93 | 2.209 |
| A5 | 8.21 | 2.201 |
| A6 | 8.52 | 2.197 |
| A7 | 8.69 | 2.191 |
| A8 | 9.54 | 2.154 |
| A9 | 9.67 | 2.135 |
| A10 | 9.81 | 2.118 |
| A11 | 10.07 | 2.101 |
| A12 | 10.23 | 2.087 |
| A13 | 10.43 | 2.069 |
| A14 | 10.60 | 2.053 |
| A15 | 11.33 | 1.989 |
| A16 | 11.60 | 1.976 |
| A17 | 11.94 | 1.959 |
| A18 | 12.20 | 1.948 |
| A19 | 12.37 | 1.941 |
| A20 | 12.49 | 1.926 |
| A21 | 12.62 | 1.923 |
| A22 | 13.68 | 1.804 |
| A23 | 13.88 | 1.782 |
| A24 | 14.01 | 1.760 |
| A25 | 14.25 | 1.741 |
| A26 | 14.48 | 1.728 |
| A27 | 14.60 | 1.723 |
| A28 | 14.75 | 1.712 |
| B1 | 11.71 | 2.077 |
| B2 | 11.67 | 2.080 |
| B3 | 11.59 | 2.086 |
| B4 | 11.55 | 2.091 |
| B5 | 11.48 | 2.099 |
| B6 | 11.74 | 2.073 |
| B7 | 11.68 | 2.079 |
| B8 | 11.63 | 2.083 |
| B9 | 11.58 | 2.086 |
| B10 | 11.51 | 2.095 |
| Sample | Leaching concentration/(mg·L-1) | |||||||
|---|---|---|---|---|---|---|---|---|
| F- | PO | Pb2+ | Cr6+ | Total Cr | As3+ | Ba2+ | Ni2+ | |
| Raw PG | 144.143 | 315.923 | 0.019 | — | 0.046 | 1.628 | 0.069 | 0.054 |
| B0 | 8.878 | 0.257 | 0.018 | — | 0.037 | 0.012 | 0.031 | 0.008 |
| B1 | 7.120 | 0.196 | 0.012 | — | 0.041 | 0.003 | 0.033 | 0.013 |
| B6 | 5.434 | 0.085 | — | — | 0.023 | — | 0.019 | 0.008 |
| GB 8978—1996(Class A) | 10.0 | 0.5 | 1.0 | 0.5 | 1.5 | 0.5 | — | 1.0 |
| GB 5085.3—2007 | 100 | — | 5 | 5 | 15 | 5 | 100 | 5 |
表6 原状磷石膏和试件的浸出毒性及相关标准限值
Table 6 Leaching toxicity of raw PG and samples and related standard limits
| Sample | Leaching concentration/(mg·L-1) | |||||||
|---|---|---|---|---|---|---|---|---|
| F- | PO | Pb2+ | Cr6+ | Total Cr | As3+ | Ba2+ | Ni2+ | |
| Raw PG | 144.143 | 315.923 | 0.019 | — | 0.046 | 1.628 | 0.069 | 0.054 |
| B0 | 8.878 | 0.257 | 0.018 | — | 0.037 | 0.012 | 0.031 | 0.008 |
| B1 | 7.120 | 0.196 | 0.012 | — | 0.041 | 0.003 | 0.033 | 0.013 |
| B6 | 5.434 | 0.085 | — | — | 0.023 | — | 0.019 | 0.008 |
| GB 8978—1996(Class A) | 10.0 | 0.5 | 1.0 | 0.5 | 1.5 | 0.5 | — | 1.0 |
| GB 5085.3—2007 | 100 | — | 5 | 5 | 15 | 5 | 100 | 5 |
| [1] | 周 武, 李 杨, 冯伟光, 等. 磷石膏的综合利用及其在建筑材料领域的应用研究进展[J]. 硅酸盐通报, 2024, 43(2): 534-542. |
| ZHOU W, LI Y, FENG W G, et al. Research progress on comprehensive utilization of phosphogypsum and its application in the field of building materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 534-542 (in Chinese). | |
| [2] | 宗 炜, 王远辉, 许 亮, 等. 工业固废磷石膏路面基层材料路用性能研究[J]. 硅酸盐通报, 2024, 43(2): 766-773. |
| ZONG W, WANG Y H, XU L, et al. Pavement performance of industrial solid waste phosphogypsum pavement base material[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 766-773 (in Chinese). | |
| [3] | 王应富, 张树光, 黄 啸, 等. 磷石膏-钢渣-矿渣固化低液限粉质黏土力学性能及耐久性能研究[J]. 土木工程学报, 2023, 56(增刊1): 12-23. |
| WANG Y F, ZHANG S G, HUANG X, et al. Study on mechanical properties and durability of phosphogypsum-steel slag-slag solidified low liquid limit silty clay[J]. China Civil Engineering Journal, 2023, 56(supplement 1): 12-23 (in Chinese). | |
| [4] |
DIWA R R, TABORA E U, PALATTAO B L, et al. Evaluating radiation risks and resource opportunities associated with phosphogypsum in the Philippines[J]. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(2): 967-974.
DOI |
| [5] |
BOUARGANE B, LAABOUBI K, BIYOUNE M G, et al. Effective and innovative procedures to use phosphogypsum waste in different application domains: review of the environmental, economic challenges and life cycle assessment[J]. Journal of Material Cycles and Waste Management, 2023, 25(3): 1288-1308.
DOI |
| [6] | 郑玉龙, 嵇 帅, 陆春华, 等. 基于固废磷石膏制备胶凝材料的工艺与机制[J]. 复合材料学报, 2024, 41(3): 1436-1446. |
| ZHENG Y L, JI S, LU C H, et al. Preparation technology and mechanism of cementitious material based on solid waste phosphogypsum[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1436-1446 (in Chinese). | |
| [7] | 朱雪涛, 杜 兵, 阿曼角, 等. 半水磷石膏地下充填材料的磷和氟浸出特性及地球化学模拟[J]. 中国环境科学, 2022, 42(2): 680-687. |
| ZHU X T, DU B, A M J, et al. Leaching properties of phosphorus and fluorine in hemihydrate phosphogypsum as underground filiing materials and geochemical simulation[J]. China Environmental Science, 2022, 42(2): 680-687 (in Chinese). | |
| [8] | 胡良灿, 李晓琴, 刘宇航, 等. 磷石膏建筑材料CO2排放评价[J]. 材料导报, 2025, 39(16): 141-146. |
| HU L C, LI X Q, LIU Y H, et al. CO2 emission evaluation for phosphogypsum building materials[J]. Materials Reports, 2025, 39(16): 141-146 (in Chinese). | |
| [9] |
曹涌钢, 张子龙, 李泽皓, 等. 工业副产石膏制备α型半水石膏的研究进展[J]. 化工进展, 2025, 44(3): 1505-1519.
DOI |
|
CAO Y G, ZHANG Z L, LI Z H, et al. Research progress on preparation of α-hemihydrate gypsum from industrial by-product gypsum[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1505-1519 (in Chinese).
DOI |
|
| [10] |
WU Y, BIAN X Y, LIU J, et al. Performance improvement and microstructure characterization of cement-stabilized roadbase materials containing phosphogypsum/recycled concrete aggregate[J]. Materials, 2023, 16(19): 6607.
DOI URL |
| [11] | 石名磊, 田新涛, 王华进, 等. 水泥-石灰-磷石膏固化赤泥的路用基层性能[J]. 长江科学院院报, 2024, 41(1): 114-120. |
| SHI M L, TIAN X T, WANG H J, et al. Performance of cement-lime-phosphogypsum solidified red mud as road base material[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(1): 114-120 (in Chinese). | |
| [12] | 孟维正, 蒋关鲁, 袁德昭, 等. 改良磷石膏的路用性能[J]. 建筑材料学报, 2022, 25(1): 81-88. |
| MENG W Z, JIANG G L, YUAN D Z, et al. Road performance of modified phosphogypsum[J]. Journal of Building Materials, 2022, 25(1): 81-88 (in Chinese). | |
| [13] |
SUN Q Q, TAO L J, LI X, et al. Study on preparation of inorganic binder stabilized material with large dosage of phosphogypsum[J]. Journal of the Korean Ceramic Society, 2023, 60(6): 883-895.
DOI |
| [14] | 许世勇, 沈卫国, 吴 鹏, 等. 骨料嵌锁型水泥-磷石膏基层材料的浸出毒性与环境影响研究[J]. 武汉理工大学学报, 2023, 45(9): 36-41+54. |
| XU S Y, SHEN W G, WU P, et al. Study on leaching toxicity and environmental impact of cement-phosphogypsum stabilized stone interlocking base material[J]. Journal of Wuhan University of Technology, 2023, 45(9): 36-41+54 (in Chinese). | |
| [15] | KANI E N, MEHDIZADEH H. Investigating gel molecular structure and its relation with mechanical strength in geopolymer cement based on natural pozzolan using in situ ATR-FTIR spectroscopy[J]. Journal of Materials in Civil Engineering, 2017, 29(8): 04017078. |
| [16] |
SANTOS V H J M, PONTIN D, PONZI G G D, et al. Application of Fourier transform infrared spectroscopy (FTIR) coupled with multivariate regression for calcium carbonate (CaCO3) quantification in cement[J]. Construction and Building Materials, 2021, 313: 125413.
DOI URL |
| [17] |
TANG L, HE Z Y, PEI S S, et al. Hydration characteristics and pollutant solidification mechanism of full solid waste electrolytic manganese residue super sulfate cement[J]. Journal of Building Engineering, 2024, 84: 108563.
DOI URL |
| [18] |
WU F H, CHEN B J, QU G F, et al. Harmless treatment technology of phosphogypsum: directional stabilization of toxic and harmful substances[J]. Journal of Environmental Management, 2022, 311: 114827.
DOI URL |
| [1] | 唐咸远, 任博文, 胡冰倩, 柳大成, 冯美杰. 超早强环保型钢渣微粉UHPC制备及形成机理[J]. 硅酸盐通报, 2026, 45(1): 191-201. |
| [2] | 鲁依萍, 黄修林, 周紫晨, 刘仕琪. 聚丙烯酸丁酯-丙烯酸/水玻璃复合改性淤泥的流变特性与力学性能[J]. 硅酸盐通报, 2026, 45(1): 325-335. |
| [3] | 岳鹏飞, 郭思标, 丁秀娟, 王玉松, 王大周, 胡悦, 张蓉蓉, 章纲, 丁金孟. 粉煤灰-矿渣-赤泥基胶凝材料固化土强度和微观机理研究[J]. 硅酸盐通报, 2026, 45(1): 336-345. |
| [4] | 李义胜, 吕伟, 吴赤球, 余正康, 何静, 水中和. 高掺量磷石膏胶凝材料硬化体制备及其性能调节[J]. 硅酸盐通报, 2025, 44(8): 2944-2954. |
| [5] | 胡建林, 李智林, 周永祥, 冷发光, 杜修力. 生石灰激发高炉矿渣-粉煤灰地质聚合物固化土力学特性研究[J]. 硅酸盐通报, 2025, 44(8): 2912-2923. |
| [6] | 邓兴辉, 徐桂弘, 包立新, 徐韦洪, 陈孜伟, 杨步雷. 磷石膏基挤压异形砖(PG-ESB)力学性能及孔隙三参数分布特性[J]. 硅酸盐通报, 2025, 44(6): 2240-2249. |
| [7] | 邱明明, 杨萌, 李晓敏, 李盛斌. 水泥固化高填方黄土抗压强度特性及其影响因素[J]. 硅酸盐通报, 2025, 44(5): 1927-1938. |
| [8] | 苏瑛, 龚伟, 刘川北, 张俊. 基于机器学习的磷石膏轻骨料混凝土配合比设计与力学性能研究[J]. 硅酸盐通报, 2025, 44(5): 1656-1665. |
| [9] | 闵锐, 刘馨怡, 杨甜甜, 王思莹, 刘文欢, 李辉. 循环流化床固硫灰-矿粉复合胶凝材料的性能、水化产物及其应用[J]. 硅酸盐通报, 2025, 44(5): 1813-1823. |
| [10] | 魏贤华, 王得林, 李超, 钟海军, 郭龙龙. 粉煤灰基地质聚合物及含水率对固化土力学性能的影响[J]. 硅酸盐通报, 2025, 44(5): 1949-1956. |
| [11] | 任骏, 余永昆, 毛雯婷, 张毓, 王大富. 基于磷石膏基细轻骨料的砂浆性能研究[J]. 硅酸盐通报, 2025, 44(4): 1420-1427. |
| [12] | 王紫嫣, 孙涛, 欧阳高尚. 过硫磷石膏矿渣水泥性能调控研究进展[J]. 硅酸盐通报, 2025, 44(4): 1208-1226. |
| [13] | 刘彦浩, 刘路路, 刘涛, 张艳, 余刘成, 张顶飞, 战元喆. 硅灰-矿渣-电石渣协同固化黄泛区粉土力学性能与微观机理研究[J]. 硅酸盐通报, 2025, 44(4): 1513-1524. |
| [14] | 杜俊彪, 杜运兴, 周芬, 李艳秋, 史雄刚, 熊征. 工业废渣复合固化洗砂泥的强度及耐久性研究[J]. 硅酸盐通报, 2025, 44(4): 1525-1534. |
| [15] | 吴燕开, 许美玲, 杨椿茂, 王世鑫, 郝润民, 彭亚男. 海水侵蚀下复合固化剂改良淤泥质土的物理力学特性研究[J]. 硅酸盐通报, 2025, 44(4): 1535-1545. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||