[1] PROVIS J L. Alkali-activated materials[J]. Cement and Concrete Research, 2018, 114: 40-48. [2] 阎培渝. 碱激发胶凝材料发展瓶颈在哪里[J]. 硅酸盐学报, 2022, 50(8): 2067-2069. YAN P Y. What is the development bottleneck of alkali-activated binder[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2067-2069 (in Chinese). [3] ELZEADANI M, BOMPA D V, ELGHAZOULI A Y. One part alkali activated materials: a state-of-the-art review[J]. Journal of Building Engineering, 2022, 57: 104871. [4] MEHTA A, SIDDIQUE R. An overview of geopolymers derived from industrial by-products[J]. Construction and Building Materials, 2016, 127: 183-198. [5] YANG T, ZHANG Z H, ZHU H J, et al. Re-examining the suitability of high magnesium nickel slag as precursors for alkali-activated materials[J]. Construction and Building Materials, 2019, 213: 109-120. [6] 单昌锋, 王 键, 郑金福, 等. 镍渣在混凝土中的应用研究[J]. 硅酸盐通报, 2012, 31(5): 1263-1268. SHAN C F, WANG J, ZHENG J F, et al. Study on application of nickel slag in cement concrete[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1263-1268 (in Chinese). [7] LI Z M, CHEN Y, PROVIS J L, et al. Autogenous shrinkage of alkali-activated slag: a critical review[J]. Cement and Concrete Research, 2023, 172: 107244. [8] YE H L, CARTWRIGHT C, RAJABIPOUR F, et al. Understanding the drying shrinkage performance of alkali-activated slag mortars[J]. Cement and Concrete Composites, 2017, 76: 13-24. [9] 刘 云, 封春甫, 刘 洋, 等. 水玻璃-Na2CO3激发富镁镍渣-粉煤灰基地质聚合物的制备及性能[J]. 硅酸盐通报, 2022, 41(2): 582-588. LIU Y, FENG C F, LIU Y, et al. Preparation and properties of sodium silicate-Na2CO3 activated magnesium-rich nickel slag-fly ash based geopolymer[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 582-588 (in Chinese). [10] CAO R L, LI B L, YOU N Q, et al. Properties of alkali-activated ground granulated blast furnace slag blended with ferronickel slag[J]. Construction and Building Materials, 2018, 192: 123-132. [11] YANG T, ZHU H J, ZHANG Z H. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars[J]. Construction and Building Materials, 2017, 153: 284-293. [12] CHEN W W, LI B, WANG J, et al. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste[J]. Cement and Concrete Research, 2021, 141: 106322. [13] SCHADE T, BELLMANN F, MIDDENDORF B. Quantitative analysis of C-(K)-A-S-H-amount and hydrotalcite phase content in finely ground highly alkali-activated slag/silica fume blended cementitious material[J]. Cement and Concrete Research, 2022, 153: 106706. [14] MA Y, WANG G, YE G, et al. A comparative study on the pore structure of alkali-activated fly ash evaluated by mercury intrusion porosimetry, N2 adsorption and image analysis[J]. Journal of Materials Science, 2018, 53(8): 5958-5972. [15] YANG K R, WHITE C E. Multiscale pore structure determination of cement paste via simulation and experiment: the case of alkali-activated metakaolin[J]. Cement and Concrete Research, 2020, 137: 106212. |