[1] 王燕谋, 苏慕珍, 张 量. 硫铝酸盐水泥[M]. 北京: 北京工业大学出版社, 1999. WANG Y M, SU M Z, ZHANG L. Sulphoaluminate cement[M]. Beijing: Press of Beijing University of Technology, 1999 (in Chinese). [2] LV L Y, LUO S T, ŠAVIJA B, et al. Effect of particle size distribution on the pre-hydration, hydration kinetics, and mechanical properties of calcium sulfoaluminate cement[J]. Construction and Building Materials, 2023, 398: 132497. [3] GARTNER E. Industrially interesting approaches to “low-CO2” cements[J]. Cement and Concrete Research, 2004, 34(9): 1489-1498. [4] 何 欢, 杨荣俊, 文俊强, 等. PVA纤维增强快硬硫铝酸盐水泥基ECC材料性能的研究[J]. 硅酸盐通报, 2019, 38(5): 1484-1490+1496. HE H, YANG R J, WEN J Q, et al. Study on the rapid hardening sulphoaluminate-based engineered cementitious composites reinforced with PVA fiber[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1484-1490+1496 (in Chinese). [5] HU C L, HOU D S, LI Z J. Micro-mechanical properties of calcium sulfoaluminate cement and the correlation with microstructures[J]. Cement and Concrete Composites, 2017, 80: 10-16. [6] HARGIS C W, LOTHENBACH B, MÜLLER C J, et al. Carbonation of calcium sulfoaluminate mortars[J]. Cement and Concrete Composites, 2017, 80: 123-134. [7] 崔天龙, 王 里, 马国伟, 等. HB-CSA与膨胀剂对3D打印混凝土收缩开裂性能的影响[J]. 材料导报, 2022, 36(2): 76-82. CUI T L, WANG L, MA G W, et al. Effect of HB-CSA and expansion agent on shrinkage and cracking performance of 3D printing concrete[J]. Materials Reports, 2022, 36(2): 76-82 (in Chinese). [8] WANG L, MA H, LI Z J, et al. Cementitious composites blending with high belite sulfoaluminate and medium-heat Portland cements for largescale 3D printing[J]. Additive Manufacturing, 2021, 46: 102189. [9] MOELICH G M, KRUGER P J, COMBRINCK R. Mitigating early age cracking in 3D printed concrete using fibres, superabsorbent polymers, shrinkage reducing admixtures, B-CSA cement and curing measures[J]. Cement and Concrete Research, 2022, 159: 106862. [10] 兰明章, 项斌峰, 周 健, 等. 快凝快硬高贝利特硫铝酸盐水泥熟料水化机理研究[J]. 硅酸盐通报, 2017, 36(8): 2720-2724+2742. LAN M Z, XIANG B F, ZHOU J, et al. Hydration mechanism of rapid setting and hardening high belite calcium sulfoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8): 2720-2724+2742 (in Chinese). [11] 张五怡, 聂 松, 徐名凤, 等. 高贝利特硫铝酸盐水泥活化研究进展[J]. 硅酸盐通报, 2022, 41(9): 2979-2992. ZHANG W Y, NIE S, XU M F, et al. Research progress on activation of high belite calcium sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 2979-2992 (in Chinese). [12] GLASSER F P, ZHANG L. High-performance cement matrices based on calcium sulfoaluminate-belite compositions[J]. Cement and Concrete Research, 2001, 31(12): 1881-1886. [13] 唐芮枫, 王子明, 兰明章, 等. 柠檬酸与聚羧酸减水剂在高贝利特硫铝酸盐水泥中的复合效应[J]. 硅酸盐学报, 2021, 49(5): 893-900. TANG R F, WANG Z M, LAN M Z, et al. Hybird effect of citric acid and polycarboxylate superplasticizer on high belite calcium sulphoaluminate cement[J]. Journal of the Chinese Ceramic Society, 2021, 49(5): 893-900 (in Chinese). [14] 唐芮枫. 高贝利特硫铝酸盐水泥与化学外加剂相容性研究[D]. 北京: 北京工业大学, 2019: 17-19. TANG R F. Study on the compatibility of high belite sulfoaluminate cement with chemical admixtures[D]. Beijing: Beijing University of Technology, 2019: 17-19 (in Chinese). [15] LIU F, LU X H, YANG W, et al. Optimizations of inhibitors compounding and applied conditions in simulated circulating cooling water system[J]. Desalination, 2013, 313: 18-27. [16] SHEN L, WANG F Q, TIAN L, et al. High-performance thin-film composite membranes with surface functionalization by organic phosphonic acids[J]. Journal of Membrane Science, 2018, 563: 284-297. [17] 吕兴栋, 王学斌, 李北星. 有机膦酸类化合物在混凝土工程中的应用及缓凝机理研究进展[J]. 材料导报, 2020, 34(15): 15184-15189. LYU X D, WANG X B, LI B X. Research progress on application of organic phosphonic acid compounds in concrete engineering and their retarding mechanism[J]. Materials Reports, 2020, 34(15): 15184-15189 (in Chinese). [18] GU P, PAMACHANDRAN V S, BEAUNDOIN J J, et al. Electrichemical behavior of Portland cement pastes containing phosphonates[J]. Advanced Cement Based Materials, 1995, 2(5): 182-188. [19] 唐芮枫, 王子明, 兰明章, 等. 缓凝剂对高贝利特硫铝酸盐水泥水化和性能的影响[J]. 硅酸盐通报, 2020, 39(12): 3763-3769. TANG R F, WANG Z M, LAN M Z, et al. Effects of retarders on hydration and properties of high-belite calcium sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(12): 3763-3769 (in Chinese). [20] RAMACHANDRAN V S, LOWERY M S, WISE T, et al. The role of phosphonates in the hydration of Portland cement[J]. Materials and Structures, 1993, 26(7): 425-432. [21] 林炎坤, 张德琛, 许建钊. 磷酸盐/膦及其盐缓凝剂的作用机理及性能[J]. 商品混凝土, 2018(8): 25-28. LIN Y K, ZHANG D C, XU J Z. The mechanism and performance of phosphate/phosphine and its salt retarders[J]. Commercial Concrete, 2018(8): 25-28 (in Chinese). [22] 齐志刚, 王瑞和, 徐依吉, 等. 油井水泥缓凝剂乙二胺四亚甲基膦酸盐的研制与应用[J]. 中国石油大学学报(自然科学版), 2008, 32(2): 63-67. QI Z G, WANG R H, XU Y J, et al. Synthesis and application of ethylene diamine tetra methytene phosphonate as oil well cement retarder[J]. Journal of China University of Petroleum (Edition of Natural Science), 2008, 32(2): 63-67 (in Chinese). [23] SU T, KONG X M, TIAN H W, et al. Effects of comb-like PCE and linear copolymers on workability and early hydration of a calcium sulfoaluminate belite cement[J]. Cement and Concrete Research, 2019, 123: 105801. [24] 李北星, 吕兴栋, 魏运权, 等. 氨基三亚甲基膦酸对水泥水化的影响[J]. 建筑材料学报, 2016, 19(3): 417-423. LI B X, LV X D, WEI Y Q, et al. Effect of amino trimethylene phosphonic acid on hydration of Portland cement[J]. Journal of Building Materials, 2016, 19(3): 417-423 (in Chinese). [25] WEI J J, FANG C L, ZHOU B, et al. Effect of organic phosphonate types on performance of alkali-activated slag-based materials and its mechanism[J]. Cement and Concrete Composites, 2024, 151: 105597. [26] LONG W J, WU Z R, WEI J J, et al. The enhanced lead (Ⅱ) ions stabilization of alkali-activated salg-based materials with appropriate addition of phosphonate[J]. Materials Report, 2023, 37: 113-120. |