[1] SUWANMANEECHOT P, AILI A, MARUYAMA I. Creep behavior of C-S-H under different drying relative humidities: interpretation of microindentation tests and sorption measurements by multi-scale analysis[J]. Cement and Concrete Research, 2020, 132: 106036. [2] 霍俊芳, 李晨霞, 侯永利, 等. 再生粗骨料混凝土收缩徐变性能试验[J]. 硅酸盐通报, 2017, 36(2): 723-726. HUO J F, LI C X, HOU Y L, et al. Experimental study on creep properties of recycled coarse aggregate concrete[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(2): 723-726 (in Chinese). [3] 陈 庞. 混凝土的徐变及其对构件受力性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2020. CHEN P. Creep of concrete and its influence on mechanical properties of members[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). [4] SHEN D J, JIANG J L, WANG W T, et al. Tensile creep and cracking resistance of concrete with different water-to-cement ratios at early age[J]. Construction and Building Materials, 2017, 146: 410-418. [5] JIRÁSEK M, HAVLÁSEK P. Microprestress-solidification theory of concrete creep: reformulation and improvement[J]. Cement and Concrete Research, 2014, 60: 51-62. [6] BAZANT Z P, WITTMANN F H. Creep and shrinkage in concrete structures[M]. Chichester: John Wiley and Sons, 1982: 129-161. [7] SCHEINER S, HELLMICH C. Continuum microviscoelasticity model for aging basic creep of early-age concrete[J]. Journal of Engineering Mechanics, 2009, 135(4): 307-323. [8] LI X, GRASLEY Z C, GARBOCZI E J, et al. Modeling the apparent and intrinsic viscoelastic relaxation of hydrating cement paste[J]. Cement and Concrete Composites, 2015, 55: 322-330. [9] AILI A, VANDAMME M, TORRENTI J M, et al. Is long-term autogenous shrinkage a creep phenomenon induced by capillary effects due to self-desiccation?[J]. Cement and Concrete Research, 2018, 108: 186-200. [10] GERNAY T, MILLARD A, FRANSSEN J M. A multiaxial constitutive model for concrete in the fire situation: theoretical formulation[J]. International Journal of Solids and Structures, 2013, 50(22/23): 3659-3673. [11] HOU D S. Molecular simulation on the calcium silicate hydrate (C-S-H) gel[D]. Hong Kong: Hong Kong University of Science and Technology, 2014. [12] WANG Y J, ISHII A, OGATA S. Transition of creep mechanism in nanocrystalline metals[J]. Physical Review B, 2011, 84(22): 224102. [13] MA H Y, LI Z J. Realistic pore structure of Portland cement paste: experimental study and numerical simulation[J]. Computers & Concrete, 2013, 11(4): 317-336. [14] TAYLOR H F W. Proposed structure for calcium silicate hydrate gel[J]. Journal of the American Ceramic Society, 1986, 69(6): 464-467. [15] PETERS B. Reaction rate theory and rare events[M]. Elsevier, 2017. [16] PELLENQ R J, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16102-16107. [17] HOU D S, ZHAO T J, WANG P G, et al. Molecular dynamics study on the mode I fracture of calcium silicate hydrate under tensile loading[J]. Engineering Fracture Mechanics, 2014, 131: 557-569. [18] SENTIABRSKAJA T, CHAUDHIRI P, HERMES M, et al. Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities[J]. Scientific Reports, 2015, 5(1): 11884. [19] KAI M F, ZHANG L W, LIEW K M. New insights into creep characteristics of calcium silicate hydrates at molecular level[J]. Cement and Concrete Research, 2021, 142: 106366. [20] LANGE D A, JENNINGS H M, SHAH S P. Image analysis techniques for characterization of pore structure of cement-based materials[J]. Cement and Concrete Research, 1994, 24(5): 841-853. [21] QOMI M J A, BROCHARD L, HONORIO T, et al. Advances in atomistic modeling and understanding of drying shrinkage in cementitious materials[J]. Cement and Concrete Research, 2021, 148: 106536. [22] LI Z L, LIU S D, TONG T T, et al. Effect of gel pore on the mechanical properties of calcium silicate hydrate by molecular dynamics simulation[J]. Journal of Materials Science & Engineering, 2023, 41(5): 703-709. [23] 张 伟, 王 攀, 王鑫鹏, 等. 分子动力学理论研究初始缺陷对水泥基材料性能的影响[J]. 硅酸盐通报, 2020, 39(3): 685-690+695. ZHANG W, WANG P, WANG X P, et al. Effect of initial defect on performance of cement-based materials by molecular dynamics theory[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(3): 685-690+695 (in Chinese). [24] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. [25] KALINICHEV A G. Molecular structure and dynamics of nano-confined water: computer simulations of aqueous species in clay, cement, and polymer membranes[M]//Transport and Reactivity of Solutions in Confined Hydrosystems. Dordrecht: Springer Netherlands, 2013: 103-115. [26] HOU D S, LI Z J. Molecular dynamics study of water and ions transported during the nanopore calcium silicate phase: case study of jennite[J]. Journal of Materials in Civil Engineering, 2014, 26(5): 930-940. [27] HOU D S, LU Z Y, ZHANG P, et al. Molecular structure and dynamics of an aqueous sodium chloride solution in nano-pores between portlandite surfaces: a molecular dynamics study[J]. Physical Chemistry Chemical Physics, 2016, 18(3): 2059-2069. [28] HAMID S A. The crystal structure of the 11 Å natural tobermorite Ca2.25[Si3O7.5(OH)1.5]·1H2O[J]. Zeitschrift Für Kristallographie-Crystalline Materials, 1981, 154(1/2/3/4): 189-198. [29] CHEN J J, THOMAS J J, TAYLOR H F W, et al. Solubility and structure of calcium silicate hydrate[J]. Cement and Concrete Research, 2004, 34(9): 1499-1519. [30] ALLEN A J, THOMAS J J, JENNINGS H M. Composition and density of nanoscale calcium-silicate-hydrate in cement[J]. Nature Materials, 2007, 6(4): 311-316. [31] FELDMAN R F, SEREDA P J. A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties[J]. Matériaux et Constructions, 1968, 1(6): 509-520. [32] JENNINGS H M. A model for the microstructure of calcium silicate hydrate in cement paste[J]. Cement and Concrete Research, 2000, 30(1): 101-116. [33] JENNINGS H M. Refinements to colloid model of C-S-H in cement: CM-II[J]. Cement and Concrete Research, 2008, 38(3): 275-289. [34] RICHARDSON I G. Model structures for C-(A)-S-H(I)[J]. Structural Science, 2014, 70(6): 903-923. [35] SOYER-UZUN S, CHAE S R, BENMORE C J, et al. Compositional evolution of calcium silicate hydrate (C-S-H) structures by total X-ray scattering[J]. Journal of the American Ceramic Society, 2012, 95(2): 793-798. [36] SVENUM I H, RINGDALEN I G, BLEKEN F L, et al. Structure, hydration, and chloride ingress in C-S-H: insight from DFT calculations[J]. Cement and Concrete Research, 2020, 129: 105965. [37] HOU D S, ZHANG J R, LI Z J, et al. Uniaxial tension study of calcium silicate hydrate (C-S-H): structure, dynamics and mechanical properties[J]. Materials and Structures, 2015, 48(11): 3811-3824. [38] GENG Z C, TANG S W, WANG Y, et al. Stress relaxation properties of calcium silicate hydrate: a molecular dynamics study[J]. Journal of Zhejiang University: Science A, 2024, 25(2): 97-115. [39] SHAHSAVARI R, BUEHLER M J, PELLENQ R J M, et al. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of tobermorite and jennite[J]. Journal of the American Ceramic Society, 2009, 92(10): 2323-2330. [40] VELEZ K, MAXIMILIEN S, DAMIDOT D, et al. Determination by nanoindentation of elastic modulus and hardness of pure constituents of Portland cement clinker[J]. Cement and Concrete Research, 2001, 31(4): 555-561. [41] HOU D S, LI D K, YU J, et al. Insights on capillary adsorption of aqueous sodium chloride solution in the nanometer calcium silicate channel: a molecular dynamics study[J]. The Journal of Physical Chemistry C, 2017, 121(25): 13786-13797. |