[1] 白卫峰. 混凝土损伤机理及饱和混凝土力学性能研究[D]. 大连: 大连理工大学, 2008. BAI W F. Study on damage mechanism of concrete and mechanical properties of saturated concrete[D]. Dalian: Dalian University of Technology, 2008 (in Chinese). [2] 郭 函. 混凝土高温力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. GUO H. Study on mechanical properties of concrete at high temperature[D]. Harbin: Harbin Institute of Technology, 2020 (in Chinese). [3] MA Q M, GUO R X, ZHAO Z M, et al. Mechanical properties of concrete at high temperature: a review[J]. Construction and Building Materials, 2015, 93: 371-383. [4] ZHU Y P, HUSSEIN H, KUMAR A, et al. A review: material and structural properties of UHPC at elevated temperatures or fire conditions[J]. Cement and Concrete Composites, 2021, 123: 104212. [5] ZHOU J K, LIANG Y Z. Reactive molecular dynamics simulation on the structure characteristics and tensile properties of calcium silicate hydrate at various temperatures and strain rates[J]. Molecular Simulation, 2020, 46(15): 1181-1190. [6] HOU D S, LI D K, ZHAO T J, et al. Confined water dissociation in disordered silicate nanometer-channels at elevated temperatures: mechanism, dynamics and impact on substrates[J]. Langmuir, 2016, 32(17): 4153-4168. [7] GE H S, SUN Z P, LU Z C, et al. Influence and mechanism analysis of different types of water reducing agents on volume shrinkage of cement mortar[J]. Journal of Building Engineering, 2024, 82: 108204. [8] BONNAUD P A, JI Q, VAN VLIET K J. Effects of elevated temperature on the structure and properties of calcium-silicate-hydrate gels: the role of confined water[J]. Soft Matter, 2013, 9(28): 6418-6429. [9] YANG J, ZHANG W, HOU D S, et al. Structure, dynamics and mechanical properties evolution of calcium silicate hydrate induced by dehydration and dehydroxylation[J]. Construction and Building Materials, 2021, 291: 123327. [10] ZHANG Y, ZHANG S Q, JIANG X, et al. Insights into the thermal effect on the fracture toughness of calcium silicate hydrate grains: a reactive molecular dynamics study[J]. Cement and Concrete Composites, 2022, 134: 104824. [11] ZHANG Y, CHEN Q, JU J W, et al. Effects of high temperature on the mechanical behavior of calcium silicate hydrate under uniaxial tension and compression[J]. International Journal of Damage Mechanics, 2021, 30(7): 987-1011. [12] ZHANG Y, ZHOU Q, JU J W, et al. New insights into the mechanism governing the elasticity of calcium silicate hydrate gels exposed to high temperature: a molecular dynamics study[J]. Cement and Concrete Research, 2021, 141: 106333. [13] HOU D S, ZHENG H P, WANG P, et al. Molecular insight in the wetting behavior of nanoscale water droplet on CSH surface: effects of Ca/Si ratio[J]. Applied Surface Science, 2022, 587: 152811. [14] MERLINO S, BONACCORSI E, ARMBRUSTER T. Tobermorites; their real structure and order-disorder (OD) character[J]. American Mineralogist, 1999, 84(10): 1613-1621. [15] CONG X D, KIRKPATRICK R J.29Si MAS NMR study of the structure of calcium silicate hydrate[J]. Advanced Cement Based Materials, 1996, 3(3/4): 144-156. [16] PELLENQ R J, KUSHIMA A, SHAHSAVARI R, et al. A realistic molecular model of cement hydrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38): 16102-16107. [17] DOLADO J S, GRIEBEL M, HAMAEKERS J. A molecular dynamic study of cementitious calcium silicate hydrate (C-S-H) gels[J]. Journal of the American Ceramic Society, 2007, 90(12): 3938-3942. [18] 任立琼. J积分在混凝土亚临界裂纹扩展模拟中的应用[D]. 兰州: 兰州大学, 2023. REN L Q. Application of J-integral in simulation of subcritical crack growth in concrete[D]. Lanzhou: Lanzhou University, 2023 (in Chinese). [19] BONNAUD P A, JI Q, COASNE B, et al. Thermodynamics of water confined in porous calcium-silicate-hydrates[J]. Langmuir, 2012, 28(31): 11422-11432. [20] CYGAN R T, LIANG J J, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. [21] HANTAL G, BROCHARD L, LAUBIE H, et al. Atomic-scale modelling of elastic and failure properties of clays[J]. Molecular Physics, 2014, 112(9/10): 1294-1305. [22] HU Z H. Infinite boundary terms of Ewald sums and pairwise interactions for electrostatics in bulk and at interfaces[J]. Journal of Chemical Theory and Computation, 2014, 10(12): 5254-5264. [23] LENNARD-JONES J E. Cohesion[J]. Proceedings of the Physical Society, 1931, 43(5): 461-482. [24] TANG Q Y, SUN M Q, LU X H, et al. Understanding erosion resistance mechanisms of sodium aluminate silicate hydrate in erosion environments: a molecular dynamics study[J]. RSC Advances, 2024, 14(15): 10397-10408. [25] VAN DUIN A C T, STRACHAN A, STEWMAN S, et al. ReaxFFSiO reactive force field for silicon and silicon oxide systems[J]. The Journal of Physical Chemistry A, 2003, 107(19): 3803-3811. [26] PLIMPTON S, CROZIER P, THOMPSON A. LAMMPS-large-scale atomic/molecular massively parallel simulator[J]. Journal of Applied Physics, 2015, 118(1): 14902-14902. [27] NOSÉ S. A molecular dynamics method for simulations in the canonical ensemble[J]. Molecular Physics, 1984, 52(2): 255-268. [28] NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of Chemical Physics, 1984, 81(1): 511-519. [29] HOOVER W G. Canonical dynamics: equilibrium phase-space distributions[J]. Physical Review A, General Physics, 1985, 31(3): 1695-1697. [30] VERLET L. Computer “experiments” on classical fluids. I. thermodynamical properties of lennard-Jones molecules[J]. Physical Review, 1967, 159(1): 98-103. [31] WANG J W, HU Z L, CHEN Y, et al. Effect of Ca/Si and Al/Si on micromechanical properties of C (-A)-S-H[J]. Cement and Concrete Research, 2022, 157: 106811. [32] WU H T, PAN J W, WANG J T. Molecular dynamics simulation study on dynamic mechanical properties of C-S-H with diverse Ca/Si ratios[J]. Materials Today Communications, 2022, 31: 103755. [33] MASARA F, HONORIO T, BENBOUDJEMA F. Sorption in C-S-H at the molecular level: disjoining pressures, effective interactions, hysteresis, and cavitation[J]. Cement and Concrete Research, 2023, 164: 107047. [34] PENG G F, HUANG Z S. Change in microstructure of hardened cement paste subjected to elevated temperatures[J]. Construction and Building Materials, 2008, 22(4): 593-599. [35] DEJONG M J, ULM F J. The nanogranular behavior of C-S-H at elevated temperatures (up to 700 ℃)[J]. Cement and Concrete Research, 2007, 37(1): 1-12. [36] DING G Y, YU X, DONG F Q, et al. Using silane coupling agent coating on acidic aggregate surfaces to enhance the adhesion between asphalt and aggregate: a molecular dynamics simulation[J]. Materials, 2020, 13(23): 5580. [37] MERAL C, BENMORE C J, MONTEIRO P J M. The study of disorder and nanocrystallinity in C-S-H, supplementary cementitious materials and geopolymers using pair distribution function analysis[J]. Cement and Concrete Research, 2011, 41(7): 696-710. [38] AMIRI M, ARYANPOUR M, PORHONAR F. Microstructural study of concrete performance after exposure to elevated temperatures via considering C-S-H nanostructure changes[J]. High Temperature Materials and Processes, 2022, 41(1): 224-237. [39] JIA Z J, CHEN C, SHI J J, et al. The microstructural change of C-S-H at elevated temperature in Portland cement/GGBFS blended system[J]. Cement and Concrete Research, 2019, 123: 105773. [40] SHAHSAVARI R, BUEHLER M J, PELLENQ R J M, et al. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of tobermorite and jennite[J]. Journal of the American Ceramic Society, 2009, 92(10): 2323-2330. [41] ALONSO C, FERNANDEZ L. Dehydration and rehydration processes of cement paste exposed to high temperature environments[J]. Journal of Materials Science, 2004, 39(9): 3015-3024. [42] ZHANG J H, YANG J, HOU D S, et al. Molecular dynamics study on calcium aluminosilicate hydrate at elevated temperatures: structure, dynamics and mechanical properties[J]. Materials Chemistry and Physics, 2019, 233: 276-287. [43] YOUSSEF M, PELLENQ R J, YILDIZ B. Glassy nature of water in an ultraconfining disordered material: the case of calcium-silicate-hydrate[J]. Journal of the American Chemical Society, 2011, 133(8): 2499-2510. [44] LI D B, ZHU J, LIU Q L, et al. Degradation of thermal stability and micromechanical properties of the C-S-H phase induced by ultra-confined water at elevated temperatures[J]. Physical Chemistry Chemical Physics, 2023, 25(48): 33064-33080. [45] HOU D S, YANG T J. A reactive molecular dynamics study of graphene oxide sheets in different saturated states: structure, reactivity and mechanical properties[J]. Physical Chemistry Chemical Physics, 2018, 20(16): 11053-11066. [46] KERISIT S, LIU C X. Molecular simulations of water and ion diffusion in nanosized mineral fractures[J]. Environmental Science & Technology, 2009, 43(3): 777-782. [47] HORBACH J, KOB W, BINDER K. Structural and dynamical properties of sodium silicate melts: an investigation by molecular dynamics computer simulation[J]. Chemical Geology, 2001, 174(1/2/3): 87-101. [48] 侯东帅, 于 娇, 张津瑞, 等. 基于反应力场分子动力学的水化硅酸钙水解弱化机理研究[J]. 水利学报, 2021, 52(1): 34-41. HOU D S, YU J, ZHANG J R, et al. Insights on hydrolysis weakening of calcium silicate hydrate: a ReaxFF molecular dynamics study[J]. Journal of Hydraulic Engineering, 2021, 52(1): 34-41 (in Chinese). |