BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2026, Vol. 45 ›› Issue (1): 325-335.DOI: 10.16552/j.cnki.issn1001-1625.2025.0784
• Road Materials • Previous Articles Next Articles
LU Yiping1(
), HUANG Xiulin1,2(
), ZHOU Zichen3, LIU Shiqi3
Received:2025-08-04
Revised:2025-09-22
Online:2026-01-20
Published:2026-02-10
CLC Number:
LU Yiping, HUANG Xiulin, ZHOU Zichen, LIU Shiqi. Rheological and Mechanical Properties of Polybutyl Acrylate-Acrylic Acid/Water Glass Composite Modified Sludge[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 325-335.
| Sample No. | M | G/% | S |
|---|---|---|---|
| a-1 | 1.9 | 2 | 0.41 |
| a-2 | 1.9 | 3 | 0.42 |
| a-3 | 1.9 | 4 | 0.43 |
| a-4 | 1.9 | 5 | 0.44 |
| a-5 | 2.2 | 2 | 0.42 |
| a-6 | 2.2 | 3 | 0.41 |
| a-7 | 2.2 | 4 | 0.44 |
| a-8 | 2.2 | 5 | 0.43 |
| a-9 | 2.5 | 2 | 0.43 |
| a-10 | 2.5 | 3 | 0.44 |
| a-11 | 2.5 | 4 | 0.41 |
| a-12 | 2.5 | 5 | 0.42 |
| a-13 | 2.8 | 2 | 0.44 |
| a-14 | 2.8 | 3 | 0.43 |
| a-15 | 2.8 | 4 | 0.42 |
| a-16 | 2.8 | 5 | 0.41 |
Table 1 Parameters of experiment for PBA
| Sample No. | M | G/% | S |
|---|---|---|---|
| a-1 | 1.9 | 2 | 0.41 |
| a-2 | 1.9 | 3 | 0.42 |
| a-3 | 1.9 | 4 | 0.43 |
| a-4 | 1.9 | 5 | 0.44 |
| a-5 | 2.2 | 2 | 0.42 |
| a-6 | 2.2 | 3 | 0.41 |
| a-7 | 2.2 | 4 | 0.44 |
| a-8 | 2.2 | 5 | 0.43 |
| a-9 | 2.5 | 2 | 0.43 |
| a-10 | 2.5 | 3 | 0.44 |
| a-11 | 2.5 | 4 | 0.41 |
| a-12 | 2.5 | 5 | 0.42 |
| a-13 | 2.8 | 2 | 0.44 |
| a-14 | 2.8 | 3 | 0.43 |
| a-15 | 2.8 | 4 | 0.42 |
| a-16 | 2.8 | 5 | 0.41 |
| Sample No. | Fluidity/mm | Unconfined compressive strength/MPa | |
|---|---|---|---|
| 7 d | 28 d | ||
| a-1 | 100 | 1.37 | 1.40 |
| a-2 | 130 | 1.39 | 1.40 |
| a-3 | 132 | 1.73 | 2.20 |
| a-4 | 138 | 1.95 | 1.98 |
| a-5 | 101 | 1.35 | 1.38 |
| a-6 | 105 | 1.58 | 1.60 |
| a-7 | 132 | 1.37 | 1.45 |
| a-8 | 124 | 1.47 | 1.48 |
| a-9 | 120 | 1.30 | 1.31 |
| a-10 | 132 | 1.31 | 1.33 |
| a-11 | 105 | 1.45 | 1.50 |
| a-12 | 129 | 1.40 | 1.41 |
| a-13 | 140 | 0.98 | 1.10 |
| a-14 | 145 | 1.00 | 1.20 |
| a-15 | 134 | 1.15 | 1.30 |
| a-16 | 100 | 1.35 | 1.40 |
Table 2 Fluidity and unconfined compressive strength values of PBA-cured soil
| Sample No. | Fluidity/mm | Unconfined compressive strength/MPa | |
|---|---|---|---|
| 7 d | 28 d | ||
| a-1 | 100 | 1.37 | 1.40 |
| a-2 | 130 | 1.39 | 1.40 |
| a-3 | 132 | 1.73 | 2.20 |
| a-4 | 138 | 1.95 | 1.98 |
| a-5 | 101 | 1.35 | 1.38 |
| a-6 | 105 | 1.58 | 1.60 |
| a-7 | 132 | 1.37 | 1.45 |
| a-8 | 124 | 1.47 | 1.48 |
| a-9 | 120 | 1.30 | 1.31 |
| a-10 | 132 | 1.31 | 1.33 |
| a-11 | 105 | 1.45 | 1.50 |
| a-12 | 129 | 1.40 | 1.41 |
| a-13 | 140 | 0.98 | 1.10 |
| a-14 | 145 | 1.00 | 1.20 |
| a-15 | 134 | 1.15 | 1.30 |
| a-16 | 100 | 1.35 | 1.40 |
| Item | Level | |||
|---|---|---|---|---|
| M | G | S | ||
| Fluidity/mm | K1 | 500 | 461 | 410 |
| K2 | 462 | 512 | 494 | |
| K3 | 486 | 503 | 521 | |
| K4 | 519 | 491 | 542 | |
7 d uncontined compressive strength/MPa | K5 | 6.44 | 5.00 | 5.75 |
| K6 | 5.77 | 5.28 | 5.29 | |
| K7 | 5.46 | 5.70 | 5.50 | |
| K8 | 4.48 | 6.17 | 5.61 | |
28 d uncontined compressive strength/MPa | K9 | 6.98 | 5.19 | 5.90 |
| K10 | 5.91 | 5.53 | 5.49 | |
| K11 | 5.55 | 6.45 | 6.19 | |
| K12 | 5.00 | 6.27 | 5.86 | |
| R1/mm | 14.25 | 12.75 | 33.00 | |
| R2/MPa | 0.49 | 0.29 | 0.12 | |
| R3/MPa | 0.50 | 0.32 | 0.18 | |
Table 3 Range analysis table
| Item | Level | |||
|---|---|---|---|---|
| M | G | S | ||
| Fluidity/mm | K1 | 500 | 461 | 410 |
| K2 | 462 | 512 | 494 | |
| K3 | 486 | 503 | 521 | |
| K4 | 519 | 491 | 542 | |
7 d uncontined compressive strength/MPa | K5 | 6.44 | 5.00 | 5.75 |
| K6 | 5.77 | 5.28 | 5.29 | |
| K7 | 5.46 | 5.70 | 5.50 | |
| K8 | 4.48 | 6.17 | 5.61 | |
28 d uncontined compressive strength/MPa | K9 | 6.98 | 5.19 | 5.90 |
| K10 | 5.91 | 5.53 | 5.49 | |
| K11 | 5.55 | 6.45 | 6.19 | |
| K12 | 5.00 | 6.27 | 5.86 | |
| R1/mm | 14.25 | 12.75 | 33.00 | |
| R2/MPa | 0.49 | 0.29 | 0.12 | |
| R3/MPa | 0.50 | 0.32 | 0.18 | |
| S | M | G/% | Sample No. |
|---|---|---|---|
| 0.43 | 1.9 | 2 | None |
| 0.43 | 1.9 | 3 | None |
| 0.43 | 2.8 | 2 | None |
| 0.43 | 2.8 | 3 | a-14 |
| 0.44 | 1.9 | 2 | None |
| 0.44 | 1.9 | 3 | None |
| 0.44 | 2.8 | 2 | a-13 |
| 0.44 | 2.8 | 3 | None |
Table 4 Arrangement and combination table of experimental parameters based on fluidity
| S | M | G/% | Sample No. |
|---|---|---|---|
| 0.43 | 1.9 | 2 | None |
| 0.43 | 1.9 | 3 | None |
| 0.43 | 2.8 | 2 | None |
| 0.43 | 2.8 | 3 | a-14 |
| 0.44 | 1.9 | 2 | None |
| 0.44 | 1.9 | 3 | None |
| 0.44 | 2.8 | 2 | a-13 |
| 0.44 | 2.8 | 3 | None |
| M | G/% | S | Sample No. |
|---|---|---|---|
| 1.9 | 4 | 0.43 | a-3 |
| 1.9 | 4 | 0.44 | None |
| 1.9 | 5 | 0.43 | None |
| 1.9 | 5 | 0.44 | a-4 |
| 2.2 | 4 | 0.43 | None |
| 2.2 | 4 | 0.44 | a-7 |
| 2.2 | 5 | 0.43 | a-8 |
| 2.2 | 5 | 0.44 | None |
Table 5 Arrangement and combination table of experimental parameters based on unconfined compressive strength
| M | G/% | S | Sample No. |
|---|---|---|---|
| 1.9 | 4 | 0.43 | a-3 |
| 1.9 | 4 | 0.44 | None |
| 1.9 | 5 | 0.43 | None |
| 1.9 | 5 | 0.44 | a-4 |
| 2.2 | 4 | 0.43 | None |
| 2.2 | 4 | 0.44 | a-7 |
| 2.2 | 5 | 0.43 | a-8 |
| 2.2 | 5 | 0.44 | None |
| [1] | 刘亦民, 饶少华, 万志辉, 等. 超高层建筑大直径钻孔灌注桩后压浆技术的应用与研究[J]. 建筑结构, 2022, 52(增刊1): 2793-2797. |
| LIU Y M, RAO S H, WAN Z H, et al. Application and research of post-grouting technology in large-diameter drilled pile in super high rise buildings[J]. Building Structure, 2022, 52(supplement 1): 2793-2797 (in Chinese). | |
| [2] | 马永磊, 马千越, 张 悦, 等. 工程弃土和粉煤灰复合泡沫轻质土力学特性分析[J]. 土木工程与绿色建筑, 2025, 1(2): 88-91. |
| MA Y L, MA Q Y, ZHANG Y, et al. Mechanical characteristics analysis of engineering dumped soil and fly ash composite foam lightweight soil[J]. Civil Engineering and Green Building, 2025, 1(2): 88-91 (in Chinese). | |
| [3] | 杨郭昊, 张本农, 胡艳军. 有机固废燃烧过程中细颗粒物表面环境持久性自由基生成的研究进展[J]. 能源环境保护, 2023, 37(3): 118-127. |
| YANG G H, ZHANG B N, HU Y J. Research progress on the generation of environmental persistent free radicals on the surface of fine particulates during the combustion of organic solid waste[J]. Energy Environmental Protection, 2023, 37(3): 118-127 (in Chinese). | |
| [4] | 王东星, 王宏伟, 邹维列, 等. 碱激发粉煤灰固化淤泥微观机制研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3197-3205. |
| WANG D X, WANG H W, ZOU W L, et al. Study on microscopic mechanism of solidification of sludge by alkali-activated fly ash[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(supplement 1): 3197-3205 (in Chinese). | |
| [5] | 王君如, 朱伟豪. 基于水热固化的工程弃土制备建材技术研究[J]. 中国市政工程, 2025(3): 71-75+186. |
| WANG J R, ZHU W H. Research on the preparation of building materials from engineering spoils based on hydrothermal curing[J]. China Municipal Engineering, 2025(3): 71-75+186 (in Chinese). | |
| [6] | 李 瑜. 关于“十四五” 大宗固体废弃物综合利用的指导意见[J]. 砖瓦, 2021(4): 189-190. |
| LI Y. Guiding opinions on comprehensive utilization of bulk solid wastes in the 14th Five-Year Plan[J]. Brick-Tile, 2021(4): 189-190 (in Chinese). | |
| [7] | 张 昀. 流态固化土在基坑肥槽回填中的应用[J]. 建筑技术, 2025, 56(13): 1558-1560. |
| ZHANG Y. Application of fluid stabilized soil in backfilling of foundation pit fertilizer trough[J]. Architecture Technology, 2025, 56(13): 1558-1560 (in Chinese). | |
| [8] | 季 节, 梁 犇, 韩秉烨, 等. 中国道路工程中土壤固化技术综述[J]. 交通运输工程学报, 2023, 23(2): 47-66. |
| JI J, LIANG B, HAN B Y, et al. Review on soil solidified technologies in road engineering in China[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 47-66 (in Chinese). | |
| [9] | 徐日庆, 朱坤垅, 黄 伟, 等. 淤泥质土固化及路用性能试验研究[J]. 湖南大学学报(自然科学版), 2022, 49(3): 167-174. |
| XU R Q, ZHU K L, HUANG W, et al. Experimental study on solidification and road performance of mucky soil[J]. Journal of Hunan University (Natural Sciences), 2022, 49(3): 167-174 (in Chinese). | |
| [10] | WANG D X, ABRIAK N E, ZENTAR R. Dredged marine sediments used as novel supply of filling materials for road construction[J]. Marine Georesources & Geotechnology, 2017, 35(4): 472-480. |
| [11] | 林 楠, 周 群. 既有弃土场填土对新建桥梁结构基础的影响和整治方案分析[J]. 西部交通科技, 2023(11): 128-132. |
| LIN N, ZHOU Q. Influence of filling in existing spoil ground on structural foundation of new bridge and analysis of treatment scheme[J]. Western China Communications Science & Technology, 2023(11): 128-132 (in Chinese). | |
| [12] | 秦玉禹, 秦子鹏, 黄 煌, 等. 水泥与粗颗粒工程弃土复合固化改良淤泥土试验研究[J]. 科学技术与工程, 2024, 24(12): 5076-5087. |
| QIN Y Y, QIN Z P, HUANG H, et al. Experimental study on composite solidification and improvement of silt soil by cement and coarse particle engineering spoil[J]. Science Technology and Engineering, 2024, 24(12): 5076-5087 (in Chinese). | |
| [13] | 周海龙, 申向东. 土壤固化剂的应用研究现状与展望[J]. 材料导报, 2014, 28(9): 134-138. |
| ZHOU H L, SHEN X D. Application research situation and prospect of soil stabilizer[J]. Materials Review, 2014, 28(9): 134-138 (in Chinese). | |
| [14] | 孔 恒, 王凯丽, 姜 瑜, 等. 环保型土壤固化剂的现状与发展策略[J]. 市政技术, 2019, 37(2): 237-241. |
| KONG H, WANG K L, JIANG Y, et al. Present situation and development strategy of environment-friendly soil stabilizer[J]. Municipal Engineering Technology, 2019, 37(2): 237-241 (in Chinese). | |
| [15] |
PENG Z C, GAO Y X, YANG W, et al. Effects of a full-solid waste-based soil stabilizer: strength, durability and microstructure[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2025, 40(3): 792-800.
DOI |
| [16] |
YU B W, MA Q W, LIU S Q, et al. Utilization of calcium carbide residue based soil stabilizer in road construction: strength, environmental impact, and field application[J]. Transportation Geotechnics, 2024, 49: 101422.
DOI URL |
| [17] | 杨圣鹏. 电石渣-矿渣-粉煤灰基地聚物固化淤泥质土力学性能及微观结构特征[J]. 湖南交通科技, 2025, 51(2): 110-114+121. |
| YANG S P. Mechanical properties and microstructural characteristics of solidified silty soil with carbide slag-slag-fly ash base polymer[J]. Hunan Communication Science and Technology, 2025, 51(2): 110-114+121 (in Chinese). | |
| [18] | 黄煜镔, 张 凯, 周静静, 等. 流化床燃煤固硫灰固化淤泥质土路用性能研究[J]. 应用基础与工程科学学报, 2019, 27(2): 375-383. |
| HUANG Y B, ZHANG K, ZHOU J J, et al. Experiment study on the road performances of muddy soil cured by fluidized bed combustion ashes[J]. Journal of Basic Science and Engineering, 2019, 27(2): 375-383 (in Chinese). | |
| [19] | 张大捷, 田晓峰, 侯浩波, 等. 矿渣胶凝材料固化软土的力学性状及机制[J]. 岩土力学, 2007, 28(9): 1987-1991. |
| ZHANG D J, TIAN X F, HOU H B, et al. Mechanical behavior and mechanism of stabilizing soft soil by slag cementitious material[J]. Rock and Soil Mechanics, 2007, 28(9): 1987-1991 (in Chinese). | |
| [20] | 刘振建, 姚 达, 邱成春, 等. 水泥-粉煤灰固化海相淤泥质软土力学特性室内试验研究[J]. 江苏水利, 2024(11): 34-38. |
| LIU Z J, YAO D, QIU C C, et al. Laboratory experimental study on the mechanical properties of cement-fly ash solidified marine silty soft soil[J]. Jiangsu Water Resources, 2024(11): 34-38 (in Chinese). | |
| [21] | 邹斌, 沈如, 齐琳琳. 改性脲醛树脂加固基床土质的研究[J]. 西南交通大学学报, 2001, 36(1): 33-36. |
| ZOU B, SHEN R, QI L L. Research on stabilizing the railway roadbed with improved urea-formaldehyde-resin[J]. Journal of Southwest Jiaotong University, 2001, 36(1): 33-36 (in Chinese). | |
| [22] | 孔繁轩, 羊东, 刘瑾, 等. 聚氨酯型固化剂改良砂土的固结特性试验研究[J]. 勘察科学技术, 2019(4): 1-6. |
| KONG F X, YANG D, LIU J, et al. Experimental study on consolidation characteristics of sand modified by polyurethane curing agent[J]. Site Investigation Science and Technology, 2019(4): 1-6 (in Chinese). | |
| [23] | 吴冠雄. 生物酶土壤固化剂加固土现场试验研究[J]. 公路工程, 2013, 38(1): 70-74+81. |
| WU G X. Field test study on stabilized soil by TerraZyme soil stabilizer[J]. Highway Engineering, 2013, 38(1): 70-74+81 (in Chinese). | |
| [24] | 郑永新, 张栓栓, 刘国帅, 等. 废弃渣土固化用无机-有机复合固化剂优选[J]. 当代化工, 2025, 54(4): 890-893+902. |
| ZHENG Y X, ZHANG S S, LIU G X, et al. Optimization of inorganic organic composite curing agents for waste soil consolidaton[J]. Contemporary Chemical Industry, 2025, 54(4): 890-893+902 (in Chinese). | |
| [25] | 邢世强, 董 勋, 张光华, 等. 抗水性聚丙烯酸酯类土壤固化剂的制备及性能[J]. 应用化工, 2022, 51(10): 2875-2879. |
| XING S Q, DONG X, ZHANG G H, et al. Preparation and properties of water-resistant polyacrylate soil curing agent[J]. Applied Chemical Industry, 2022, 51(10): 2875-2879 (in Chinese). | |
| [26] | 蒋明烨, 胡贺松, 梁湖清, 等. 土壤固化剂的研究及其工程应用进展[J]. 广州建筑, 2024, 52(8): 109-113. |
| JIANG M Y, HU H S, LIANG H Q, et al. Research progress and engineering application of soil stabilizers[J]. Guangzhou Architecture, 2024, 52(8): 109-113 (in Chinese). | |
| [27] | ZHOU Y X, HUO M H, ZHANG L S, et al. Strength development and solidification mechanism of soils with different properties stabilized by cement-slag-based materials[J]. Case Studies in Construction Materials, 2024, 21: e04034. |
| [1] | YUE Pengfei, GUO Sibiao, DING Xiujuan, WANG Yusong, WANG Dazhou, HU Yue, ZHANG Rongrong, ZHANG Gang, DING Jinmeng. Strength and Microscopic Mechanism of Fly Ash-Slag-Red Mud-Based Cementitious Materials Solidified Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 336-345. |
| [2] | HE Zhaoyi, ZOU Meng, YAO Qiwen, CAO Dongwei, QIN Meng. Performance and Strength Formation Mechanism of High Dosage Phosphogypsum-Cement-Curing Agent Stabilized Crushed Stone Base Layer Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 346-358. |
| [3] | HU Jianlin, LI Zhilin, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Mechanical Properties of Quicklime-Activated Ground Blast Furnace Slag-Fly Ash Geopolymer-Stabilized Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2912-2923. |
| [4] | HAO Mingsheng, QIN Qingjin, GAO Hui, QU Chunyu, QIN Yong,FANG Kuizhen, HAO Jianshuai. Effects of Water-Reducing Agents on Rheological Property and Strength of Magnesium Slag-Fly Ash-Based Flowable Solidified Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2710-2719. |
| [5] | QIU Mingming, YANG Meng, LI Xiaomin, LI Shengbin. Compressive Strength Characteristics and Its Influencing Factors of High Fill Loess Solidified by Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1927-1938. |
| [6] | WEI Xianhua, WANG Delin, LI Chao, ZHONG Haijun, GUO Longlong. Effect of Fly Ash-Based Geopolymer and Water Content on Mechanical Properties of Solidified Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1949-1956. |
| [7] | AN Ran, CAI Sutong, ZHANG Xianwei, GAO Haodong, YAO Miao, LIU Kui. Microscopic Cracks and Damage Model of Slag Stabilized Soil Based on Uniaxial Compression and CT Scanning [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1495-1503. |
| [8] | LIU Yanhao, LIU Lulu, LIU Tao, ZHANG Yan, YU Liucheng, ZHANG Dingfei, ZHAN Yuanzhe. Mechanical Properties and Microscopic Mechanisms of Yellow Floodplain Silt Solidified by Silica Fume-Ground Granulated Blast Furnace Slag-Carbide Slag Synergy [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1513-1524. |
| [9] | DU Junbiao, DU Yunxing, ZHOU Fen, LI Yanqiu, SHI Xionggang, XIONG Zheng. Strength and Durability of Industrial Waste Slag Composite Curing Sand Washing Sludge [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1525-1534. |
| [10] | WU Yankai, XU Meiling, YANG Chunmao, WANG Shixin, HAO Runmin, PENG Yanan. Physical and Mechanical Properties of Mucky Soil Modified by Composite Curing Agent under Seawater Erosion [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1535-1545. |
| [11] | CHEN Jianhua, DAI Zili. Crack Evolution Characteristic and Strength Deterioration Mechanism of Bentonite-Fiber Improved Solidified Soil in Dry Environments [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 1170-1181. |
| [12] | JIA Rui, CHU Zhenxing. Research Status and Progress on Solidifying Soft Clay by Geopolymer [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 490-500. |
| [13] | GUAN Hongxin, ZHANG Haixiang, YANG Hairong, YANG Fei, ZHENG Tianyi. Mechanical Properties and Durability of Red Sandstone Soil Solidified by Cement and Biological Enzyme [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 765-773. |
| [14] | DAI Hengjun, WU Guangxiong, LI Haifeng, ZHOU Xue, ZHANG Rongjun. Workability of Fluid Soil Solidified with Cement Synergistic Industrial Solid Waste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(12): 4492-4502. |
| [15] | YUAN Huihui, DENG Jiaxin, YU Ben, ZHANG Xiaoxiang, GU Lei, YANG Jianhui, HAN Shuang. Prediction and Optimization of Solidified Soil Performance Using Solid Waste-Based Cementitious Materials on Neural Network [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(10): 3761-3772. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||