[1] BENSALAH H, BEKHEET M F, ALAMI YOUNSSI S, et al. Hydrothermal synthesis of nanocrystalline hydroxyapatite from phosphogypsum waste[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 1347-1352. [2] 邓 华, 侯硕旻, 李中军, 等. 磷石膏综合利用现状及展望[J]. 无机盐工业, 2024, 56(1): 1-8+22. DENG H, HOU S M, LI Z J, et al. Current situation and prospect of comprehensive utilization of phosphogypsum[J]. Inorganic Chemicals Industry, 2024, 56(1): 1-8+22 (in Chinese). [3] 张 峻, 解维闵, 董雄波, 等. 磷石膏材料化综合利用研究进展[J]. 材料导报, 2023, 37(16): 167-178. ZHANG J, XIE W M, DONG X B, et al. Research progress on comprehensive utilization of phosphogypsum for materials: a review[J]. Materials Reports, 2023, 37(16): 167-178 (in Chinese). [4] 陈 攀, 李梦迪, 胡 磊, 等. 磷石膏资源化利用的现状、方法、趋势和挑战[J]. 广东化工, 2024, 51(14): 68-70. CHEN P, LI M D, HU L, et al. The current situation, methods, trends, and challenges of resource utilization of phosphogypsum[J]. Guangdong Chemical Industry, 2024, 51(14): 68-70 (in Chinese). [5] 周 武, 李 杨, 冯伟光, 等. 磷石膏的综合利用及其在建筑材料领域的应用研究进展[J]. 硅酸盐通报, 2024, 43(2): 534-542. ZHOU W, LI Y, FENG W G, et al. Research progress on comprehensive utilization of phosphogypsum and its application in the field of building materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 534-542 (in Chinese). [6] 林宗寿, 黄 赟, 水中和, 等. 过硫磷石膏矿渣水泥与混凝土[M]. 武汉: 武汉理工大学出版社, 2015. LIN Z S, HUANG Y, SHUI Z H, et al. Excess-sulfate phosphogypsum slag cement and concrete[M]. Wuhan: Wuhan University of Technology Press, 2015 (in Chinese). [7] 水中和, 吴赤球, 孙 涛, 等. 过硫磷石膏矿渣水泥混凝土的研究与应用进展[J]. 混凝土与水泥制品, 2021(2): 97-100. SHUI Z H, WU C Q, SUN T, et al. Research and application progress of excess-sulfate phosphogypsum slag cement concrete[J]. China Concrete and Cement Products, 2021(2): 97-100 (in Chinese). [8] 吴赤球, 水中和, 吕 伟, 等. 超高掺量磷石膏水硬性胶凝材料及其应用[M]. 武汉: 武汉理工大学出版社, 2023. WU C Q, SHUI Z H, LYU W, et al. High dosage phosphogypsum hydraulic cementing material and its application[M]. Wuhan: Wuhan University of Technology Press, 2023 (in Chinese). [9] MIN C D, SHI Y, LIU Z X. Properties of cemented phosphogypsum (PG) backfill in case of partially substitution of composite Portland cement by ground granulated blast furnace slag[J]. Construction and Building Materials, 2021, 305: 124786. [10] 张 彬, 吴赤球, 水中和, 等. 高掺量磷石膏人造骨料内部微结构特征研究[J]. 武汉理工大学学报, 2022, 44(3): 1-5. ZHANG B, WU C Q, SHUI Z H, et al. Study on the microstructure characteristics of artificial aggregate with high content of phosphogypsum[J]. Journal of Wuhan University of Technology, 2022, 44(3): 1-5 (in Chinese). [11] 高 辉. 高掺量磷石膏免烧砖制备新工艺及机理研究[D]. 武汉: 中国地质大学, 2012. GAO H. Study on new preparation technology and mechanism of high content phosphogypsum baking-free brick[D]. Wuhan: China University of Geosciences, 2012 (in Chinese). [12] 刘爱平, 吴赤球, 水中和, 等. 高掺量磷石膏水硬性胶凝材料组成设计与性能调节[J]. 硅酸盐通报, 2024, 43(3): 1003-1011. LIU A P, WU C Q, SHUI Z H, et al. Composition design and property regulation of high content phosphogypsum hydraulic cementing material[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 1003-1011 (in Chinese). [13] 陈飞翔, 水中和, 丁 沙, 等. 过硫磷石膏矿渣水泥混凝土的配合比优化设计研究[J]. 武汉理工大学学报, 2013, 35(11): 8-13. CHEN F X, SHUI Z H, DING S, et al. Optimization design research on the mix proportion of persulphated phosphogypsum-slag cement concrete[J]. Journal of Wuhan University of Technology, 2013, 35(11): 8-13 (in Chinese). [14] DONG E L, FU S Y, WU C Q, et al. Value-added utilization of phosphogypsum industrial by-products in producing green ultra-high performance concrete: detailed reaction kinetics and microstructure evolution mechanism[J]. Construction and Building Materials, 2023, 389: 131726. [15] LIU X, WU C Q, LV W, et al. Regulating sulfur migration and transformation in low water-binder ratio cementitious system incorporating phosphogypsum aggregate: environmentally friendly clean materials[J]. Journal of Building Engineering, 2024, 91: 109586. [16] FENG P, GARBOCZI E J, MIAO C W, et al. Microstructural origins of cement paste degradation by external sulfate attack[J]. Construction and Building Materials, 2015, 96: 391-403. [17] 王紫嫣, 水中和, 孙 涛, 等. 高铁钢渣作碱激发剂对过硫磷石膏矿渣凝结硬化性能的影响[J]. 材料导报, 2023, 37(增刊1): 277-283. WANG Z Y, SHUI Z H, SUN T, et al. Effect of high-iron steel slag as alkali activator on setting and hardening properties of superphosphate gypsum slag[J]. Materials Reports, 2023, 37(supplement 1): 277-283 (in Chinese). [18] WANG Z Y, SHUI Z H, SUN T, et al. Recycling utilization of phosphogypsum in eco excess-sulphate cement: synergistic effects of metakaolin and slag additives on hydration, strength and microstructure[J]. Journal of Cleaner Production, 2022, 358: 131901. [19] OUYANG G S, LI Z W, SUN T, et al. Greener phosphogypsum-based all-solid-waste cementitious binder with steel slag activation: hydration, mechanical properties and durability[J]. Journal of Cleaner Production, 2024, 443: 140996. [20] 钱觉时, 余金城, 孙化强, 等. 钙矾石的形成与作用[J]. 硅酸盐学报, 2017, 45(11): 1569-1581. QIAN J S, YU J C, SUN H Q, et al. Formation and function of ettringite in cement hydrates[J]. Journal of the Chinese Ceramic Society, 2017, 45(11): 1569-1581 (in Chinese). [21] 李 胜, 张红日, 王桂尧, 等. 基于响应面法的碱激发地聚物固化淤泥质土试验研究[J]. 硅酸盐通报, 2023, 42(12): 4438-4448. LI S, ZHANG H R, WANG G Y, et al. Experimental study of alkali-activated geopolymer cured silty soil based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4438-4448 (in Chinese). [22] LI H, CHEN L J, CHEN H N, et al. Environmental factors affecting accelerated carbonation of recycled concrete aggregates using response surface methodology[J]. Journal of Cleaner Production, 2024, 474: 143599. [23] 王永辉, 朱连勇, 王 成, 等. 基于响应面法的矿粉复合固化盐渍土试验研究[J]. 硅酸盐通报, 2024, 43(5): 1917-1927. WANG Y H, ZHU L Y, WANG C, et al. Experimental study on mineral powder composite solidified saline soil based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(5): 1917-1927 (in Chinese). [24] LI H Y, WU Y F, ZHOU A X, et al. Experimental study on self-healing performance of tunnel lining concrete based on response surface methodology[J]. Construction and Building Materials, 2024, 425: 136105. |