[1] 中华人民共和国生态环境部. 生态环境状况公报: 2023中国生态环境状况公报[EB/OL]. (2024-06-05) [2025-03-26]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202406/P020240604551536165161.pdf. Ministry of Ecology and Environment of the People's Republic of China. Report on the state of the environment in China: China's environmental status report 2023[EB/OL]. (2024-06-05) [2025-03-26]. https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202406/P020240604551536165161.pdf (in Chinese). [2] LIU Y Q, GUO D W, DONG L, et al. Pollution status and environmental sound management (ESM) trends on typical general industrial solid waste[J]. Procedia Environmental Sciences, 2016, 31: 615-620. [3] TANG J X, WANG Q W, CHOI G. Efficiency assessment of industrial solid waste generation and treatment processes with carry-over in China[J]. Science of the Total Environment, 2020, 726: 138274. [4] TONG R, SUI T B, FENG L Z, et al. The digitization work of cement plant in China[J]. Cement and Concrete Research, 2023, 173: 107266. [5] KAPLAN G, BAYRAKTAR O Y, LI Z G, et al. Improving the eco-efficiency of fiber reinforced composite by ultra-low cement content/high FA-GBFS addition for structural applications: minimization of cost, CO2 emissions and embodied energy[J]. Journal of Building Engineering, 2023, 76: 107280. [6] 中华人民共和国国家发展和改革委员会. 水泥行业节能降碳专项行动计划[EB/OL]. (2024-06-07) [2025-03-26]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202406/P020240607579153428151.pdf. National Development and Reform Commission. Special action plan for energy saving and carbon reduction in the cement industry[EB/OL]. (2024-06-07) [2025-03-26]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202406/P020240607579153428151.pdf (in Chinese). [7] KLEIB J, AOUAD G, BENZERZOUR M, et al. Effect of calcium sulfoaluminate cements composition on their durability[J]. Construction and Building Materials, 2021, 307: 124952. [8] LV L Y, LUO S T, BRANKO , et al. Effect of particle size distribution on the pre-hydration, hydration kinetics, and mechanical properties of calcium sulfoaluminate cement[J]. Construction and Building Materials, 2023, 398: 132497. [9] MORIN V, TERMKHAJORNKIT P, HUET B, et al. Impact of quantity of anhydrite, water to binder ratio, fineness on kinetics and phase assemblage of belite-ye'elimite-ferrite cement[J]. Cement and Concrete Research, 2017, 99: 8-17. [10] XIN X Y, DUAN G B, ZHU J, et al. Study on the properties of belite calcium sulfoaluminate cement-ordinary Portland cement composite cementitious system[J]. Buildings, 2024, 14(4): 890. [11] GU X Y, TAN H B, HE X Y, et al. Utilization of carbide slag by wet grinding as an accelerator in calcium sulfoaluminate cement[J]. Materials, 2020, 13(20): 4526. [12] WANG Y L, DONG S J, LIU L L, et al. Study formation process of cement clinker minerals by using calcium carbide slag as raw material[J]. Applied Mechanics and Materials, 2013, 389: 341-345. [13] 裘国华, 施正伦, 余春江, 等. 煤矸石代黏土煅烧水泥熟料配方优化试验研究[J]. 浙江大学学报(工学版), 2010, 44(1): 130. QIU G H, SHI Z L, YU C J, et al. Experimental research on utilization of coal gangue as clay for optimized formula on cement clinker calcination[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(1): 130 (in Chinese). [14] 郭 伟, 王 春, 孙佳胜, 等. 硫铝酸钙-贝利特水泥熟料的低温制备及其水化性能研究[J]. 材料导报, 2017, 31(24): 35-39. GUO W, WANG C, SUN J S, et al. Study on low-temperature preparation and hydration properties of calcium sulphoaluminate-belite cement clinker[J]. Materials Review, 2017, 31(24): 35-39 (in Chinese). [15] 兰明章, 陈智丰, 张振秋, 等. 一种利用煤矸石制备的高贝利特硫铝酸盐水泥: CN101786812A[P]. 2010-07-28. LAN M Z, CHEN Z F, ZHANG Z Q, et al. A kind of high belite sulphoaluminate cement prepared from coal gangue: CN101786812A[P]. 2010-07-28 (in Chinese). [16] 梁 娇, 楚婉怡, 黄永波, 等. 预分解磷石膏制备贝利特-硫铝酸盐水泥[J]. 材料导报, 2017, 31(24): 1-5. LIANG J, CHU W Y, HUANG Y B, et al. Preparation of belite-sulphoaluminate cement from pre-decomposed phosphogypsum[J]. Material Bulletin, 2017, 31(24): 1-5 (in Chinese). [17] ZHANG P, ZHANG B X, CHANG J, et al. Investigation of process parameters of phosphogypsum for preparing calcium sulfoaluminate cement[J]. Buildings, 2022, 12(11): 1774. [18] WANG W L, WANG X J, ZHU J P, et al. Experimental investigation and modeling of sulfoaluminate cement preparation using desulfurization gypsum and red mud[J]. Industrial & Engineering Chemistry Research, 2013, 52(3): 1261-1266. [19] 夏瑞杰, 朱建平, 刘少雄, 等. 赤泥和脱硫石膏制备高贝利特硫铝酸盐水泥熟料[J]. 有色金属工程, 2017, 7(6): 58-63+79. XIA R J, ZHU J P, LIU S X, et al. Preparation of high belite sulphoaluminate cement clinkers using red mud and desulfurization gypsum[J]. Nonferrous Metals Engineering, 2017, 7(6): 58-63+79 (in Chinese). [20] WANG Z, LI J Z, HUANG S W, et al. Effect of Al2O3/SiO2 ratio on the chroma and phase compositions of white sulfoaluminate cement clinker[J]. Construction and Building Materials, 2022, 345: 128202. [21] 刘辉敏. 水泥生产技术基础[M]. 2版. 北京: 化学工业出版社, 2016. LIU H M. Basic of cement production technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2016 (in Chinese). [22] HUANG Y B, QIAN J S, LIANG J, et al. Characterization and calorimetric study of early-age hydration behaviors of synthetic ye'elimite doped with the impurities in phosphogypsum[J]. Journal of Thermal Analysis and Calorimetry, 2016, 123(2): 1545-1553. [23] WU S, YAO Y G, YAO X L, et al. Co-preparation of calcium sulfoaluminate cement and sulfuric acid through mass utilization of industrial by-product gypsum[J]. Journal of Cleaner Production, 2020, 265: 121801. [24] CUESTA A, DE LA TORRE A G, LOSILLA E R, et al. Structure, atomistic simulations, and phase transition of stoichiometric yeelimite[J]. Chemistry of Materials, 2013, 25(9): 1680-1687. [25] 宋 飞, 俞为民, 姚丕强, 等. C2S-C4A3水泥熟料的矿物组成[J]. 南京工业大学学报(自然科学版), 2014, 36(4): 29-33. SONG F, YU W M, YAO P Q, et al. Mineral composition of C2S-C4A3 clinker[J]. Journal of Nanjing Tech University (Natural Science Edition), 2014, 36(4): 29-33 (in Chinese). [26] LI J Y, CHANG J. Effect of crystal/amorphous ratio on mechanical properties in a-C2S hydration system with or without gypsum addition[J]. Construction and Building Materials, 2019, 208: 36-45. [27] ZHANG H, LI J J, KANG F. Real-time monitoring of humidity inside concrete structures utilizing embedded smart aggregates[J]. Construction and Building Materials, 2022, 331: 127317. [28] 王明明. 煤矸石制备高贝利特硫铝酸盐水泥试验研究[D]. 西安: 西安建筑科技大学, 2023. WANG M M. Experimental study on preparation of high belite sulphoaluminate cement from coal gangue[D]. Xi'an: Xi'an University of Architecture and Technology, 2023 (in Chinese). [29] 谭俊华, 史熙亮, 朱开金, 等. 利用低品位铝矾土和铸造废砂制备高贝利特硫铝酸盐水泥的研究[J]. 硅酸盐通报, 2017, 36(12): 4284-4290+4301. TAN J H, SHI X L, ZHU K J, et al. Preparation of high belite sulphoaluminate cement by low grade bauxite and foundry waste sand[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4284-4290+4301 (in Chinese). [30] WANG X L, GUO M Z, YUE G B, et al. Synthesis of high belite sulfoaluminate cement with high volume of mixed solid wastes[J]. Cement and Concrete Research, 2022, 158: 106845. [31] 瞿海洋. 铁相对贝利特硫铝酸盐水泥制备与性能影响研究[D]. 北京: 北京工业大学, 2018. QU H Y. Study on the influence of iron phase on the preparation and properties of belite sulphoaluminate cement[D]. Beijing: Beijing University of Technology, 2018 (in Chinese). [32] LUDWIG H M, ZHANG W S. Research review of cement clinker chemistry[J]. Cement and Concrete Research, 2015, 78: 24-37. [33] ISTERI V, OHENOJA K, HANEIN T, et al. Ferritic calcium sulfoaluminate belite cement from metallurgical industry residues and phosphogypsum: clinker production, scale-up, and microstructural characterisation[J]. Cement and Concrete Research, 2022, 154: 106715. |