[1] 石元春. 我国生物质能源发展综述[J]. 智慧电力, 2017, 45(7): 1-5+42. SHI Y C. Overview of biomass energy development in China[J]. Smart Power, 2017, 45(7): 1-5+42 (in Chinese). [2] DOVICHI F F B, CASTILLO S Y, SILVA L E E, et al. Evaluation of the maturity level of biomass electricity generation technologies using the technology readiness level criteria[J]. Journal of Cleaner Production, 2021, 295: 126426. [3] 赵保峰, 谢洪璋, 任常在, 等. 生物质电厂灰渣建材化应用[J]. 科学技术与工程, 2022, 22(17): 6802-6811. ZHAO B F, XIE H Z, REN C Z, et al. Application of biomass power plant ash as building materials[J]. Science Technology and Engineering, 2022, 22(17): 6802-6811 (in Chinese). [4] CARRASCO B, CRUZ N, TERRADOS J, et al. An evaluation of bottom ash from plant biomass as a replacement for cement in building blocks[J]. Fuel, 2014, 118: 272-280. [5] 张 强, 李耀庄, 刘保华, 等. 秸秆灰混凝土力学性能试验及强度预测[J]. 农业工程学报, 2017, 33(2): 259-265. ZHANG Q, LI Y Z, LIU B H, et al. Mechanical properties and strength prediction of straw ash concrete[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 259-265 (in Chinese). [6] HINOJOSA M J R, GALVÍN A P, AGRELA F, et al. Potential use of biomass bottom ash as alternative construction material: conflictive chemical parameters according to technical regulations[J]. Fuel, 2014, 128: 248-259. [7] 林 欢, 龚蔚成, 王旭伟, 等. 城市生活垃圾焚烧发电技术的研究及应用[J]. 中国环保产业, 2019(1): 50-52. LIN H, GONG W C, WANG X W, et al. Research and application of municipal solid waste incineration power generation technology[J]. China Environmental Protection Industry, 2019(1): 50-52 (in Chinese). [8] 彭军芝, 彭小芹. 加气混凝土的结构与性能研究进展[J]. 材料导报, 2011, 25(1): 89-93. PENG J Z, PENG X Q. A review on structure and properties of aerated concrete[J]. Materials Review, 2011, 25(1): 89-93 (in Chinese). [9] NARAYANAN N, RAMAMURTHY K. Structure and properties of aerated concrete: a review[J]. Cement and Concrete Composites, 2000, 22(5): 321-329. [10] CUENCA J, RODRÍGUEZ J, MARTÍN-MORALES M, et al. Effects of olive residue biomass fly ash as filler in self-compacting concrete[J]. Construction and Building Materials, 2013, 40: 702-709. [11] SHENG G H, LI Q, ZHAI J P. Investigation on the hydration of CFBC fly ash[J]. Fuel, 2012, 98: 61-66. [12] WU R D, DAI S B, JIAN S W, et al. Utilization of the circulating fluidized bed combustion ash in autoclaved aerated concrete: effect of superplasticizer[J]. Construction and Building Materials, 2020, 237: 117644. [13] LI X G, LIU Z L, LV Y, et al. Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete[J]. Construction and Building Materials, 2018, 178: 175-182. [14] 郭晓潞, 宋 猛. 蒸压加气混凝土的孔结构及表征方法研究进展[J]. 材料导报, 2018, 32(增刊2): 440-445. GUO X L, SONG M. Development on pore structure and characterization of autoclaved aerated concrete[J]. Materials Review, 2018, 32(supplement 2): 440-445 (in Chinese). [15] WU R D, DAI S B, JIAN S W, et al. Utilization of solid waste high-volume calcium coal gangue in autoclaved aerated concrete: physico-mechanical properties, hydration products and economic costs[J]. Journal of Cleaner Production, 2021, 278: 123416. [16] SONG Y M, GUO C C, QIAN J S, et al. Effect of the Ca-to-Si ratio on the properties of autoclaved aerated concrete containing coal fly ash from circulating fluidized bed combustion boiler[J]. Construction and Building Materials, 2015, 83: 136-142. [17] MASCHIO S, TONELLO G, PIANI L, et al. Fly and bottom ashes from biomass combustion as cement replacing components in mortars production: rheological behaviour of the pastes and materials compression strength[J]. Chemosphere, 2011, 85(4): 666-671. |