[1] BASSIM F N, AMIN M, MOHAMED H A, et al. Optimizing microencapsulated PCM ratios of sustainable cement mortar for energy savings in buildings[J]. Construction and Building Materials, 2023, 391: 131844. [2] BACCEGA E, BOTTARELLI M, CESARI S. Addition of granular phase change materials (PCMs) and graphene to a cement-based mortar to improve its thermal performances[J]. Applied Thermal Engineering, 2023, 229: 120582. [3] RAHUL D, INDU S R G, MUTHUKUMAR P. Use of agglomerated Micro-encapsulated phase change material in cement mortar as thermal energy storage material for buildings[J]. Materials Today: Proceedings, 2022, 65(P2): 808-814. [4] 王程遥, 李昭君, 朱群志. 相变微胶囊制备及其性能表征研究进展[J]. 上海电力大学学报, 2023, 39(1): 73-79+97. WANG C Y, LI Z J, ZHU Q Z. Research progress on preparation and characterization of microencapsulated phase change material[J]. Journal of Shanghai University of Electric Power, 2023, 39(1): 73-79+97 (in Chinese). [5] 王信刚, 刘世成, 雷为愉, 等. 石蜡相变微胶囊的热学性能与红外隐身性能[J]. 材料导报, 2022, 36(24): 239-243. WANG X G, LIU S C, LEI W Y, et al. Thermal properties and infrared stealth performance of paraffin phase change microcapsules[J]. Materials Reports, 2022, 36(24): 239-243 (in Chinese). [6] HALDER S, WANG J L, FANG Y, et al. Cenosphere-based PCM microcapsules with bio-inspired coating for thermal energy storage in cementitious materials[J]. Materials Chemistry and Physics, 2022, 291: 126745. [7] SARCINELLA A, BARROSO D A J L, JESUS C, et al. Thermal properties of PEG-based form-stable phase change materials (PCMs) incorporated in mortars for energy efficiency of buildings[J]. Journal of Energy Storage, 2023, 67: 107545. [8] NAVEEN K G, VINAYAKA R V, PARAMESHWARAN R. Thermal and structural properties of cement mortar embedded with hybrid nanocomposite based phase change nanocapsules for building application[J]. Construction and Building Materials, 2023, 385: 131481. [9] REN M, WEN X D, GAO X J, et al. Thermal and mechanical properties of ultra-high performance concrete incorporated with microencapsulated phase change material[J]. Construction and Building Materials, 2021, 273: 121714. [10] PARK B, CHEONG C H, PARK D Y, et al. Effects of microencapsulated phase change material on indoor thermal comfort and energy consumption[J]. Case Studies in Thermal Engineering, 2023, 41: 102681. [11] DJAMAI Z I, SALVATORE F, SI L A, et al. Multiphysics analysis of effects of encapsulated phase change materials (PCMs) in cement mortars[J]. Cement and Concrete Research, 2019, 119: 51-63. [12] YU K Y, LIU Y S, JIA M J, et al. Thermal energy storage cement mortar containing encapsulated hydrated salt/fly ash cenosphere phase change material: thermo-mechanical properties and energy saving analysis[J]. Journal of Energy Storage, 2022, 51: 104388. [13] 张广平, 李远红, 陈俊豪, 等. 高热导率相变微胶囊的制备及性能[J]. 功能材料, 2023, 54(6): 6208-6214. ZHANG G P, LI Y H, CHEN J H, et al. Preparation and performance of high thermal conductive phase change microcapsules[J]. Journal of Functional Materials, 2023, 54(6): 6208-6214 (in Chinese). [14] 张雪松, 张艳荣, 高 亮, 等. 相变微胶囊对水泥石宏观性能与微观结构的影响[J]. 北京交通大学学报, 2022, 46(3): 110-117. ZHANG X S, ZHANG Y R, GAO L, et al. Influence of microencapsulated phase change materials on macroscopic properties and microstructure of hardened cement paste[J]. Journal of Beijing Jiaotong University, 2022, 46(3): 110-117 (in Chinese). [15] 张毅博, 孙志礼, 闫玉涛, 等. 一种基于失效概率相对误差估计的可靠性分析方法[J]. 东北大学学报(自然科学版), 2020, 41(2): 229-233+240. ZHANG Y B, SUN Z L, YAN Y T, et al. A reliability analysis method based on relative error estimation of failure probability[J]. Journal of Northeastern University (Natural Science), 2020, 41(2): 229-233+240 (in Chinese). |