[1] 任崇财. 钢纤维喷射混凝土力学性能研究及应用[J]. 水利与建筑工程学报, 2017, 15(6): 189-193. REN C C. Experimental study on mechanical properties of steel fiber reinforced shotcrete and its application in tunnel engineering[J]. Journal of Water Resources and Architectural Engineering, 2017, 15(6): 189-193 (in Chinese). [2] 刘 喆, 姜艳红, 杨 旸. 铁路隧道早高强喷射混凝土设计标准及应用研究[J]. 现代隧道技术, 2022, 59(6): 232-238+249. LIU Z, JIANG Y H, YANG Y. Study on design standard and application of early high strength shotcrete in railway tunnel[J]. Modern Tunnelling Technology, 2022, 59(6): 232-238+249 (in Chinese). [3] THOMAS A, DE BATTISTA N, ELSHAFIE M, et al. Back-analysis of sprayed concrete lined (SCL) tunnel junctions at liverpool street crossrail station[J]. Tunnelling and Underground Space Technology, 2023, 141: 105391. [4] 韩少渊. 寒区隧道混凝土衬砌结构耐久性研究综述[J]. 混凝土与水泥制品, 2021(3): 24-27. HAN S Y. Review on durability of tunnel concrete lining structure in cold region[J]. China Concrete and Cement Products, 2021(3): 24-27 (in Chinese). [5] 同月苹, 王 艳, 张少辉. 隧道衬砌纤维混凝土力学性能与耐久性能的研究进展[J]. 材料科学与工程学报, 2022, 40(3): 528-536. TONG Y P, WANG Y, ZHANG S H. Research progress on mechanical properties and durability properties of tunnel lining fiber reinforced concrete[J]. Journal of Materials Science and Engineering, 2022, 40(3): 528-536 (in Chinese). [6] HU Z J, WANG Q B, LV H, et al. Improved mechanical and macro-microscopic characteristics of shotcrete by incorporating hybrid alkali-resistant glass fibers[J]. Construction and Building Materials, 2023, 403: 133131. [7] 徐存东, 黄 嵩, 李洪飞, 等. 盐冻作用下玄武岩纤维混凝土力学性能损伤研究[J]. 硅酸盐通报, 2021, 40(3): 812-820. XU C D, HUANG S, LI H F, et al. Damage of mechanical properties of basalt fiber reinforced concrete under salt freezing[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(3): 812-820 (in Chinese). [8] 吴海林, 张 玉, 何 山. 钢-玄武岩混杂纤维对混凝土裂缝的影响研究[J]. 华中科技大学学报(自然科学版), 2023, 51(7): 98-103. WU H L, ZHANG Y, HE S. Study on crack resistance of steel-basalt hybrid fiber reinforced concrete[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2023, 51(7): 98-103 (in Chinese). [9] 焦华喆, 韩振宇, 陈新明, 等. 玄武岩纤维对喷射混凝土力学性能及微观结构的影响机制[J]. 复合材料学报, 2019, 36(8): 1926-1934. JIAO H Z, HAN Z Y, CHEN X M, et al. Influence mechanism of basalt fibre on the toughness and microstructure of spray concrete[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1926-1934 (in Chinese). [10] 郭丽萍, 张文潇, 孙 伟, 等. 隧道用纤维素纤维混凝土在弯拉荷载作用下的耐久性[J]. 东南大学学报(自然科学版), 2016, 46(3): 612-618. GUO L P, ZHANG W X, SUN W, et al. Durability of cellulose fiber reinforced concrete under bending load in tunnel engineering[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(3): 612-618 (in Chinese). [11] LI M, GONG F, WU Z S. Study on mechanical properties of alkali-resistant basalt fiber reinforced concrete[J]. Construction and Building Materials, 2020, 245: 118424. [12] SMARZEWSKI P. Influence of basalt-polypropylene fibres on fracture properties of high performance concrete[J]. Composite Structures, 2019, 209: 23-33. [13] 赵 卓, 曲礼英, 马磊磊. PVA-纤维素混杂纤维混凝土的工作性能与力学性能[J]. 混凝土, 2017(10): 93-95. ZHAO Z, QU L Y, MA L L. Work performance and mechanical properties of PVA-cellulose hybrid fiber reinforced concrete[J]. Concrete, 2017(10): 93-95 (in Chinese). [14] YUAN Z, JIA Y M. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: an experimental study[J]. Construction and Building Materials, 2021, 266: 121048. [15] 崔 凯, 徐礼华, 池 寅. 钢-聚丙烯混杂纤维混凝土等幅受压疲劳变形[J]. 建筑材料学报, 2023, 26(7): 755-761. CUI K, XU L H, CHI Y. Fatigue deformation of steel-polypropylene hybrid fiber reinforced concrete under constant-amplitude cyclic compression[J]. Journal of Building Materials, 2023, 26(7): 755-761 (in Chinese). [16] 胡建荣, 何 锐, 李永鹏. 掺入混杂合成纤维的混凝土力学性能分析[J]. 华南理工大学学报(自然科学版), 2015, 43(10): 16-22. HU J R, HE R, LI Y P. Analysis of mechanical properties of concrete mixed with hybrid synthetic fiber[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(10): 16-22 (in Chinese). [17] 赵雅明, 张明飞, 张 振, 等. 混杂纤维增强高强混凝土性能研究[J]. 硅酸盐通报, 2022, 41(7): 2299-2307. ZHAO Y M, ZHANG M F, ZHANG Z, et al. Study on properties of hybrid fiber reinforced high strength concrete[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(7): 2299-2307 (in Chinese). [18] LIU R Q, ZHAO S, SUN S H, et al. Experimental study of the mechanical properties and microstructure of basalt fiber-reinforced concrete[J]. Journal of Materials in Civil Engineering, 2023, 35(7): 4023205. [19] ZHANG H A, WANG L, BAI L Y, et al. Research on the impact response and model of hybrid basalt-macro synthetic polypropylene fiber reinforced concrete[J]. Construction and Building Materials, 2019, 204: 303-316. [20] WEI Y M, CHAI J R, QIN Y A, et al. Effect of fly ash on mechanical properties and microstructure of cellulose fiber-reinforced concrete under sulfate dry-wet cycle attack[J]. Construction and Building Materials, 2021, 302: 124207. [21] 徐礼华, 梅国栋, 黄 乐, 等. 钢-聚丙烯混杂纤维混凝土轴心受拉应力-应变关系研究[J]. 土木工程学报, 2014, 47(7): 35-45. XU L H, MEI G D, HUANG L, et al. Study on uniaxial tensile stress-strain relationship of steel-polypropylene hybrid fiber reinforced concrete[J]. China Civil Engineering Journal, 2014, 47(7): 35-45 (in Chinese). [22] 李忠友, 刘元雪, 姚志华, 等. 基于能量耗散原理的混凝土力学损伤模型[J]. 土木工程学报, 2019, 52(增刊1): 23-30. LI Z Y, LIU Y X, YAO Z H, et al. Mechanical damage model for concrete based on energy dissipation[J]. China Civil Engineering Journal, 2019, 52(supplement 1): 23-30 (in Chinese). [23] 傅 强, 赵 旭, 何嘉琦, 等. 基于能量转化原理的混杂纤维混凝土本构行为[J]. 硅酸盐学报, 2021, 49(8): 1670-1682. FU Q, ZHAO X, HE J Q, et al. Constitutive response of hybrid basalt-polypropylene fiber-reinforced concrete based on energy conversion principle[J]. Journal of the Chinese Ceramic Society, 2021, 49(8): 1670-1682 (in Chinese). [24] 徐 颖, 刘家兴, 杨荣周, 等. 超高强度橡胶混凝土的力学特性及能量演化[J]. 建筑材料学报, 2023, 26(6): 612-622. XU Y, LIU J X, YANG R Z, et al. Mechanical properties and energy evolution of ultra high strength rubber concrete[J]. Journal of Building Materials, 2023, 26(6): 612-622 (in Chinese). [25] ZHOU R H, CHENG H A, LI M J, et al. Energy evolution analysis and brittleness evaluation of high-strength concrete considering the whole failure process[J]. Crystals, 2020, 10(12): 1099. [26] 李学亮, 赵庆朝, 李伟光, 等. 煤系偏高岭土对混凝土力学性能及微观结构的影响机理[J]. 硅酸盐通报, 2023, 42(9): 3221-3230. LI X L, ZHAO Q C, LI W G, et al. Influence mechanism of coal-series metakaolin on mechanical properties and microstructure of concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3221-3230 (in Chinese). [27] 陈俊豪, 李炎隆, 周 恒, 等. 低温低湿养护条件对混凝土微观结构影响[J]. 硅酸盐学报, 2023, 51(5): 1202-1209. CHEN J H, LI Y L, ZHOU H, et al. Effect of low temperature and low humidity curing condition on microstructure of concrete[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1202-1209 (in Chinese). [28] 郭寅川, 刘洪昌, 申爱琴, 等. 玄武岩纤维桥梁混凝土韧性特征及衰减规律[J]. 长安大学学报(自然科学版), 2023, 43(2): 89-99. GUO Y C, LIU H C, SHEN A Q, et al. Toughness characteristics and attenuation law of basalt fiber bridge concrete[J]. Journal of Chang'an University (Natural Science Edition), 2023, 43(2): 89-99 (in Chinese). [29] LEE S W, KIM G W, OH T, et al. The microstructure and mechanical properties of cementless ultra-high-performance alkali activated concrete considering geometrical properties of steel fiber[J]. Cement and Concrete Composites, 2023, 142: 105209. |