[1] HORIE T, KONO T, KISHIMOTO Y, et al. The effect of CaO-MgO mixture on desulfurization of molten Ni-base superalloy[J]. Metallurgical and Materials Transactions B, 2021, 52(4): 2687-2702. [2] LI Y, CHEN C Y, QIN G Q, et al. Smelting high purity 55SiCr automobile suspension spring steel with different refractories[J]. High Temperature Materials and Processes, 2022, 41(1): 315-327. [3] 王恭一, 赵惠忠, 黄日清, 等. AOD炉渣对镁钙质耐火材料的侵蚀机理[J]. 硅酸盐通报, 2023, 42(4): 1496-1505. WANG G Y, ZHAO H Z, HUANG R Q, et al. Corrosion mechanism of AOD slag on magnesia calcium refractories[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(4): 1496-1505 (in Chinese). [4] 郭 正, 刘百宽, 田晓利, 等. 不同活性MgO对高钙镁钙耐火材料性能的影响[J]. 硅酸盐通报, 2015, 34(11): 3390-3393. GUO Z, LIU B K, TIAN X L, et al. Effect of different activities of MgO on the performance of MgO-CaO refractories with high calcium composition[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(11): 3390-3393 (in Chinese). [5] 黄 忍, 李可琢, 解厚波, 等. 镁钙质耐火材料抗水化研究进展[J]. 耐火材料, 2022, 56(4): 277-282. HUANG R, LI K Z, XIE H B, et al. Research progress on hydration resistance of magnesia-calcia refractories[J]. Refractories, 2022, 56(4): 277-182 (in Chinese). [6] CHEN M, WANG N, YU J K, et al. Effect of porosity on carbonation and hydration resistance of CaO materials[J]. Journal of the European Ceramic Society, 2007, 27(4): 1953-1959. [7] QIU G B, PENG B, YUE C S, et al. Properties of regenerated MgO-CaO refractory bricks: impurity of iron oxide[J]. Ceramics International, 2016, 42(2): 2933-2940. [8] 吴占德, 蒋明学. 镁钙系耐火材料的研究现状[J]. 耐火材料, 2009, 43(2): 136-139. WU Z D, JIANG M X. State-of-the-art in studies on hydration resistance of MgO-CaO material[J]. Refractories, 2009, 43(2): 136-139 (in Chinese). [9] ZHANG B W, MA B Y, ZHU Q, et al. In-situ formation and densification of MgAl2O4-Y3Al5O12 and MgAl2O4-MgNb2O6 ceramics via a single-stage SRS process[J]. Science of Sintering, 2017, 49(3): 285-297. [10] LIU J B, WANG Z F, LIU H, et al. Effect of Y2O3 addition on sintering properties and microstructure of spinel materials[J]. China's Refractories, 2018, 27(1): 39-43. [11] ZAN W Y, MA B Y, TANG J H, et al. Preparation and properties of MgAl2O4 spinel ceramics by double-doped CeO2 and La2O3[J]. Ceramics International, 2023, 49(10): 15164-15175. [12] 张 寒, 余 俊, 赵惠忠, 等. CeO2对MgO-CaO材料烧结及导电性影响[J]. 稀有金属材料与工程, 2015, 44(增刊1): 774-777. ZHANG H, YU J, ZHAO H Z, et al. Effect of CeO2 on sintering and conductivity properties of MgO-CaO materials[J]. Rara Metal Materials and Engineering, 2015, 44(supplement 1): 774-777. [13] YI N, MA Y, WANG Z F, et al. Microstructural regulation and properties enhancement of MgO-CaO ceramics by doping Y2O3[J]. Journal of Rare Earths, 2023, 41(11): 1771-1779. [14] 陆志新, 于燕文, 杨正方. 稀土氧化物对高钙镁钙材料结构与性能的影响[J]. 稀有金属材料与工程, 2008, 37(增刊1): 651-653. LU Z X, YU Y W, YANG Z F. Effect of rara earth oxides on the microstructure and properties of MgO-CaO ceramics[J]. Rare Metal Materials and Engineering, 2008, 37(supplement 1): 651-653 (in Chinese). [15] CHEN A, MA Y, WANG Z F, et al. Preparation of yttrium oxide coating with enhanced thermal shock resistance on refractories used for titanium alloy melting and casting[J]. Journal of Iron and Steel Research International, 2024, 31(6): 1411-1422. [16] ZHANG H R, TANG X X, ZHOU C G, et al. Comparison of directional solidification of γ-TiAl alloys in conventional Al2O3 and novel Y2O3-coated Al2O3 crucibles[J]. Journal of the European Ceramic Society, 2013, 33(5): 925-934. [17] KUANG J P, HARDING R A, CAMPBELL J. Investigation into refractories as crucible and mould materials for melting and casting γ-TiAl alloys[J]. Materials Science and Technology, 2000, 16(9): 1007-1016. [18] 易 念. 氧化镁-氧化钙-氧化钇材料制备与性能研究[D]. 武汉: 武汉科技大学, 2023. YI N. Preparation and properties of the MgO-CaO-Y2O3 materials[D]. Wuhan: Wuhan University of Science and Technology, 2023 (in Chinese). [19] GHASEMI-KAHRIZSANGI S, NEMATI A, SHAHRAKI A, et al. Densification and properties of Fe2O3 nanoparticles added CaO refractories[J]. Ceramics International, 2016, 42(10): 12270-12275. [20] SHAHRAKI A, GHASEMI-KAHRIZSANGI S, NEMATI A. Performance improvement of MgO-CaO refractories by the addition of nano-sized Al2O3[J]. Materials Chemistry and Physics, 2017, 198: 354-359. [21] ZHANG S, WANG J R, LI Y G, et al. Effect of TiO2 addition on microstructures and properties of MgO-CaO refractory aggregates[J]. Journal of Iron and Steel Research International, 2024, 31(6): 1547-1554. [22] GHASEMI-KAHRIZSANGI S, DEHSHEIKH H G, KARAMIAN E, et al. Effect of MgAl2O4 nanoparticles addition on the densification and properties of MgO-CaO refractories[J]. Ceramics International, 2017, 43(6): 5014-5019. [23] ZHAO Y D, WANG L Z, CHEN C Y, et al. Effect of a MgO-CaO-ZrO2-based refractory on the cleanliness of a K4169 Ni-based superalloy[J]. Ceramics International, 2023, 49(1): 117-125. [24] ZHANG T, WEI Y W, CHEN J F, et al. Preparation of CaO-MgO-ZrO2 refractory and its desulfurization effect on Ni-based alloy in vacuum induction melting (VIM)[J]. Journal of the Australian Ceramic Society, 2020, 56(3): 885-894. [25] CHEN M, LU C Y, YU J K. Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2[J]. Journal of the European Ceramic Society, 2007, 27(16): 4633-4638. |