[1] KHAN H A, TAWALBEH M, ALJAWRNEH B, et al. A comprehensive review on supercapacitors: their promise to flexibility, high temperature, materials, design, and challenges[J]. Energy, 2024, 295: 131043. [2] THOMAS S A, CHERUSSERI J, RAJENDRAN D N. 2D nickel sulfide electrodes with superior electrochemical thermal stability along with long cyclic stability for supercapatteries[J]. Energy Technology, 2024, 12(6): 2301641. [3] ZHU P P, ZHANG Z, ZHAO P F, et al. Rational design of intertwined carbon nanotubes threaded porous CoP@carbon nanocubes as anode with superior lithium storage[J]. Carbon, 2019, 142: 269-277. [4] CHANUT N, STEFANIUK D, WEAVER J C, et al. Carbon-cement supercapacitors as a scalable bulk energy storage solution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(32): e2304318120. [5] GREENHALGH E, ANKERSEN J, ASP L, et al. Mechanical, electrical and microstructural characterisation of multifunctional structural power composites[J]. Journal of Composite Materials, 2015, 49(15): 1823-1834. [6] WANG K M, LI L Z, LI Y J, et al. Preparation of graphene carbon nanotube supercapacitor electrode materials for new energy vehicles[J]. Materials Technology, 2024, 39(1): 2372945-2372945. [7] SERWAR M, SADIQ R, ALI RANA U, et al. Porous nitrogen-doped carbons derived from poultry feathers for electrochemical capacitors[J]. Journal of Physics and Chemistry of Solids, 2025, 196: 112393. [8] LUO X C, CHUNG D D L. Carbon-fiber/polymer-matrix composites as capacitors[J]. Composites Science and Technology, 2001, 61(6): 885-888. [9] HU X, SHI C J, LIU X J, et al. Studying the effect of alkali dosage on microstructure development of alkali-activated slag pastes by electrical impedance spectroscopy (EIS)[J]. Construction and Building Materials, 2020, 261: 119982. [10] BEDIWY A, BASSUONI M T. Resistivity, penetrability and porosity of concrete: a tripartite relationship[J]. Journal of Testing and Evaluation, 2018, 46(2): 549-563. [11] TAN B, LI H H, YUAN Q, et al. Optimizing activated carbon electrodes and improving their electrochemical performance through nitrogen doping and HNO3 modification[J]. Materials Today Communications, 2024, 41: 110459. [12] XU H, ZHONG S, YUAN C, et al. Honeycomb-like N, S dual-doped porous carbons derived from pomelo peel by effective exogenous doping strategy for supercapacitor electrodes[J]. Diamond and Related Materials, 2024, 150: 111768. [13] 刘海峰. 高分子辅助沉积法可控制备LaCoO3体系薄膜及其结构与物性研究[D]. 合肥: 中国科学技术大学, 2014. LIU H F. Controllable polymer assisted deposition, structure and physical properties of LaCoO3 system thin films[D]. Hefei: University of Science and Technology of China, 2014 (in Chinese). [14] FENG H C, WEI Y, LI Y F, et al. Cement-based structural supercapacitors design and performance: a review[J]. Journal of Energy Storage, 2024, 102: 114090. [15] WANG J, ZHANG D. Structural supercapacitor constructed by SnO2/graphene coated nickel foam electrode and synchronously synthesized polymer cement electrolyte at room temperature[J]. Materials Chemistry and Physics, 2022, 277: 125488. [16] WANG J, WANG J, MAO Y F, et al. The surface activation of boron to improve ignition and combustion characteristic[J]. Defence Technology, 2022, 18(9): 1679-1687. [17] 刘忠玉, 黄通通, 曹永青, 等. 生物炭水泥土渗透特性试验及细观结构分析[J]. 岩土力学, 2024, 45(10): 2929-2936. LIU Z Y, HUANG T T, CAO Y Q, et al. Permeability test and meso-structure analysis of biochar-cement soil[J]. Rock and Soil Mechanics, 2024, 45(10): 2929-2936 (in Chinese). [18] ZHONG H, XU F, LI Z H, et al. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes[J]. Nanoscale, 2013, 5(11): 4678-4682. [19] SHEN Y H, ZHAO G Y, DENG T, et al. Surface-modified carbon-doped cementitious electrodes for energy storage systems: fabrication and pseudocapacitive performance[J]. Ionics, 2025: 1-13. [20] WU F, ZHANG M H, BAI Y, et al. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12554-12561. [21] SAYED D M, TAHA M M, GHANEM L G, et al. Hybrid supercapacitors: a simple electrochemical approach to determine optimum potential window and charge balance[J]. Journal of Power Sources, 2020, 480: 229152. [22] QIU Y J, LU J J, YAN Y J, et al. Enhanced visible-light-driven photocatalytic degradation of tetracycline by 16% Er3+-Bi2WO6 photocatalyst[J]. Journal of Hazardous Materials, 2022, 422: 126920. |