[1] XU J M, FRANZA A, MARSHALL A M, et al. Tunnel-framed building interaction: comparison between raft and separate footing foundations[J]. Géotechnique, 2021, 71(7): 631-644. [2] 郭卫社, 王百泉, 李沿宗, 等. 盾构渣土无害化处理、资源化利用现状与展望[J]. 隧道建设(中英文), 2020, 40(8): 1101-1112. GUO W S, WANG B Q, LI Y Z, et al. Status quo and prospect of harmless disposal and reclamation of shield muck in China[J]. Tunnel Construction, 2020, 40(8): 1101-1112 (in Chinese). [3] 谢亦朋, 张 聪, 阳军生, 等. 盾构隧道渣土资源化再利用技术研究及展望[J]. 隧道建设(中英文), 2022, 42(2): 188-207. XIE Y P, ZHANG C, YANG J S, et al. Research and prospect on technology for resource recycling of shield tunnel spoil[J]. Tunnel Construction, 2022, 42(2): 188-207 (in Chinese). [4] CONSOLI N C, ARCARI BASSANI M A, FESTUGATO L. Effect of fiber-reinforcement on the strength of cemented soils[J]. Geotextiles and Geomembranes, 2010, 28(4): 344-351. [5] CUI H Z, JIN Z Y, BAO X H, et al. Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms[J]. Construction and Building Materials, 2018, 189: 286-295. [6] AKBULUT S, ARASAN S, KALKAN E. Modification of clayey soils using scrap tire rubber and synthetic fibers[J]. Applied Clay Science, 2007, 38(1/2): 23-32. [7] 唐朝生, 施 斌, 高 玮, 等. 含砂量对聚丙烯纤维加筋黏性土强度影响的研究[J]. 岩石力学与工程学报, 2007, 26(增刊1): 2968-2973. TANG C S, SHI B, GAO W, et al. Study on effects of sand content on strength of polypropylene fiber reinforced clay soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(supplement 1): 2968-2973 (in Chinese). [8] SHAO W, CETIN B, LI Y D, et al. Experimental investigation of mechanical properties of sands reinforced with discrete randomly distributed fiber[J]. Geotechnical and Geological Engineering, 2014, 32(4): 901-910. [9] 唐朝生, 施 斌, 刘 春, 等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186-1193. TANG C S, SHI B, LIU C, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38(10): 1186-1193 (in Chinese). [10] JIN L X, SONG W M, SHU X, et al. Use of water reducer to enhance the mechanical and durability properties of cement-treated soil[J]. Construction and Building Materials, 2018, 159: 690-694. [11] 闫 楠, 杨俊杰, 刘 强, 等. 海水环境下水泥土强度衰减过程室内试验研究[J]. 土木工程学报, 2017, 50(11): 115-124. YAN N, YANG J J, LIU Q, et al. Laboratory test on strength deterioration process of soil cement in seawater environment[J]. China Civil Engineering Journal, 2017, 50(11): 115-124 (in Chinese). [12] ZHANG W B, MA J Z, TANG L. Experimental study on shear strength characteristics of sulfate saline soil in Ningxia region under long-term freeze-thaw cycles[J]. Cold Regions Science and Technology, 2019, 160: 48-57. [13] 胡现岳. 硫酸盐侵蚀-干湿交替耦合作用下纤维增强地聚合物砂浆性能研究[D]. 荆州: 长江大学, 2023. HU X Y. Study on the properties of fiber-reinforced geopolymer mortar under the coupling action of sulfate erosion and dry-wet alternation[D]. Jingzhou: Yangtze University, 2023 (in Chinese). [14] 吴燕开, 史可健, 胡晓士, 等. 海水侵蚀下钢渣粉+水泥固化土强度劣化试验研究[J]. 岩土工程学报, 2019, 41(6): 1014-1022. WU Y K, SHI K J, HU X S, et al. Experimental study on strength degradation of steel slag + cement-solidified soil under seawater erosion[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1014-1022 (in Chinese). [15] LV Q F, JIANG L S, MA B, et al. A study on the effect of the salt content on the solidification of sulfate saline soil solidified with an alkali-activated geopolymer[J]. Construction and Building Materials, 2018, 176: 68-74. [16] 沈 骏, 袁 梦, 闫 敏, 等. 海洋环境下干湿循环对结构混凝土性能影响的研究现状、存在问题及其发展趋势[J]. 硅酸盐通报, 2017, 36(6): 1929-1938. SHEN J, YUAN M, YAN M, et al. Research status, exist problems and development trend on the effect of the dry-wet cycles on the properties of the structure concrete in the marine environment[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(6): 1929-1938 (in Chinese). [17] CLIFTON J R, FRONHNSDORFF G, FERRARIS C. Standards for evaluating the susceptibility of cement based materials to external sulfate attack[J]. Materials Science of Concrete: Sulfate Attack Mechanims, 1999: 337-356. [18] 刘开伟, 王爱国, 孙道胜, 等. 硫酸盐侵蚀下钙矾石的形成和膨胀机理研究现状[J]. 硅酸盐通报, 2016, 35(12): 4014-4019. LIU K W, WANG A G, SUN D S, et al. Recent progress of ettringite formation and its expansion mechanisms during sulfate attack[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(12): 4014-4019 (in Chinese). [19] 刘 顿, 李嘉芳, 陈 雷, 等. 盾构渣土在道路工程中资源化利用与性能分析[J]. 现代隧道技术, 2024, 61(增刊1): 175-182. LIU D, LI J F, CHEN L, et al. Resource utilization and performance analysis of shield muck in road engineering[J]. Modern Tunnelling Technology, 2024, 61(supplement 1): 175-182 (in Chinese). [20] 杨 磊. 盾构隧道固化渣土用于公路路基填筑的可行性研究[J]. 公路交通技术, 2024, 40(2): 33-41. YANG L. Feasibility study on the use of solidified muck in shield tunnels for highway subgrade filling[J]. Technology of Highway and Transport, 2024, 40(2): 33-41 (in Chinese). [21] ASTM International. Standard test method for wetting and drying test of solid wastes: ASTM D4843-88 (2018)[S]. West Conshohocken, PA: ASTM International, 2018. [22] DUAN X L, ZHANG J S. Mechanical properties, failure mode, and microstructure of soil-cement modified with fly ash and polypropylene fiber[J]. Advances in Materials Science and Engineering, 2019, 2019(1): 9561794. [23] 张经双, 段雪雷, 吴倩云, 等. 氯盐-干湿循环耦合作用下水泥土的力学性能[J]. 建筑材料学报, 2021, 24(3): 508-515+550. ZHANG J S, DUAN X L, WU Q Y, et al. Mechanical properties of cement soil subject to coupling effect of chloride salt solution and dry-wet cycles[J]. Journal of Building Materials, 2021, 24(3): 508-515+550 (in Chinese). [24] 刘路路. 基于再生聚酯纤维的粉土路基改良性能研究[D]. 南京: 东南大学, 2021. LIU L L. Research on the improvement performance of silty soil subgrade based on recycled polyester fiber[D]. Nanjing: Southeast University, 2021 (in Chinese). [25] ZHANG H G, LIU T, CUI Y X, et al. Experimental study on the performance of basalt fiber combined with cement-based material solidified shield waste mud under the coupled effects of acid corrosion and dry-wet cycles[J]. Construction and Building Materials, 2025, 463: 140110. [26] 胡长明, 袁一力, 王雪艳, 等. 干湿循环作用下压实黄土强度劣化模型试验研究[J]. 岩石力学与工程学报, 2018, 37(12): 2804-2818. HU C M, YUAN Y L, WANG X Y, et al. Experimental study on strength deterioration model of compacted loess under wetting-drying cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(12): 2804-2818 (in Chinese). [27] 汪洪星, 柯 睿, 谈云志, 等. 固化淤泥土的干湿循环劣化特征[J]. 硅酸盐通报, 2018, 37(9): 2704-2709. WANG H X, KE R, TAN Y Z, et al. Deterioration characters of solidified/stabilized sediments by dry-wet circulations[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2704-2709 (in Chinese). [28] 汪锦东, 罗梦婷, 鹿庆蕊, 等. 干湿循环下稻草秸秆-聚乙烯醇增强粉质黏土强度特性与微观机理[J]. 硅酸盐通报, 2024, 43(7): 2630-2639. WANG J D, LUO M T, LU Q R, et al. Strength characteristics and micro mechanism of straw-polyvinyl alcohol reinforced silty clay under dry-wet cycle[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(7): 2630-2639 (in Chinese). [29] 杨爱武, 姜 帅, 封安坤, 等. 固化轻质土在干湿循环及大变形条件下力学特性研究[J]. 水文地质工程地质, 2020, 47(3): 93-100. YANG A W, JIANG S, FENG A K, et al. A study of the mechanical properties of curing light soil under the condition of drying-wetting circles and large deformation[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 93-100 (in Chinese). |