[1] 杨亮亮, 谢志鹏, 李 双, 等. 气压烧结氮化硅陶瓷的研究与应用进展[J]. 陶瓷学报, 2014, 35(5): 457-464. YANG L L, XIE Z P, LI S, et al. Progress in research and application of gas-pressure-sintered silicon nitride ceramics[J]. Journal of Ceramics, 2014, 35(5): 457-464 (in Chinese). [2] 刘文勇, 李建斌, 孙振飞, 等. 无压烧结氮化硅陶瓷的致密化过程[J]. 粉末冶金材料科学与工程, 2020, 25(3): 191-196. LIU W Y, LI J B, SUN Z F, et al. Densification process of pressureless sintered silicon nitride ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(3): 191-196 (in Chinese). [3] 张 晶, 王文雪, 孙 峰, 等. 烧结温度对氮化硅陶瓷球显微结构和力学性能的影响[J]. 硅酸盐通报, 2021, 40(1): 252-257. ZHANG J, WANG W X, SUN F, et al. Effect of sintering temperature on microstructure and mechanical properties of silicon nitride ceramic balls[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(1): 252-257 (in Chinese). [4] 朱允瑞, 贺云鹏, 杨 鑑, 等. 高导热氮化硅陶瓷基板影响因素研究现状[J]. 硅酸盐通报, 2024, 43(7): 2649-2660. ZHU Y R, HE Y P, YANG J, et al. Research status on influencing factors of high thermal conductivity Si3N4 ceramic substrate[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(7): 2649-2660 (in Chinese). [5] 陈 波, 韦中华, 李 镔, 等. 氮化硅陶瓷在四大领域的研究及应用进展[J]. 硅酸盐通报, 2022, 41(4): 1404-1415. CHEN B, WEI Z H, LI B, et al. Research and application progress of silicon nitride ceramics in four major fields[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(4): 1404-1415 (in Chinese). [6] 罗 杰, 李俊国, 李美娟, 等. 压力和温度对等离子活化烧结Si3N4陶瓷致密化及相变的影响[J]. 人工晶体学报, 2019, 48(8): 1505-1510. LUO J, LI J G, LI M J, et al. Effects of pressure and temperature on densification and phase transformation of Si3N4 ceramics by plasma activated sintering[J]. Journal of Synthetic Crystals, 2019, 48(8): 1505-1510 (in Chinese). [7] 张景贤, 段于森, 江东亮, 等. 高导热氮化硅陶瓷的低成本制备和性能研究[J]. 真空电子技术, 2018(4): 18-21+25. ZHANG J X, DUAN Y S, JIANG D L, et al. Low cost preparation and properties of high thermal conductivity silicon nitride ceramics[J]. Vacuum Electronics, 2018(4): 18-21+25 (in Chinese). [8] ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. Journal of the European Ceramic Society, 2014, 34(10): 2585-2589. [9] ZHOU Y, HYUGA H, KUSANO D, et al. Development of high-thermal-conductivity silicon nitride ceramics[J]. Journal of Asian Ceramic Societies, 2015, 3(3): 221-229. [10] KITAYAMA M, HIRAO K, WATARI K, et al. Thermal conductivity of β-Si3N4: III, effect of rare-earth (RE=La, Nd, Gd, Y, Yb, and Sc) oxide additives[J]. Journal of the American Ceramic Society, 2001, 84(2): 353-58 [11] 段于森, 张景贤, 李晓光, 等. 稀土氧化物对常压烧结氮化硅陶瓷性能的影响[J]. 无机材料学报, 2017, 32(12): 1275-1279. DUAN Y S, ZHANG J X, LI X G, et al. Rare earth oxides on property of pressureless sintered Si3N4 ceramics[J]. Journal of Inorganic Materials, 2017, 32(12): 1275-1279 (in Chinese). [12] 王月隆, 吴昊阳, 贾宝瑞, 等. SPS烧结及常压热处理对氮化硅热导的影响[J]. 真空电子技术, 2021(5): 58-63. WANG Y L, WU H Y, JIA B R, et al. Effects of spark plasma sintering and atmospheric pressure heat treatment on thermal conductivity of silicon nitride[J]. Vacuum Electronics, 2021(5): 58-63 (in Chinese). [13] LEE K M, LEE W H, KOH Y H, et al. Microstructural evolution and mechanical properties of gas-pressure-sintered Si3N4 with Yb2O3 as a sintering aid[J]. Journal of Materials Research, 1999, 14(5): 1904-1909. [14] LIANG H Q, WANG W D, ZUO K H, et al. Effect of LaB6 addition on mechanical properties and thermal conductivity of silicon nitride ceramics[J]. Ceramics International, 2020, 46(11): 17776-17783. [15] DOW H S, KIM W S, LEE J W. Thermal and electrical properties of silicon nitride substrates[J]. AIP Advances, 2017, 7(9): 095022. [16] PARK H, KIM H E, NIIHARA K. Microstructural evolution and mechanical properties of Si3N4 with Yb2O3 as a sintering additive[J]. Journal of the American Ceramic Society, 1997, 80(3): 750-756. [17] HAN W B, LI Y X, CHEN G Q, et al. Effect of sintering additive composition on microstructure and mechanical properties of silicon nitride[J]. Materials Science and Engineering: A, 2017, 700: 19-24. [18] LIU W, TONG W X, HE R X, et al. Effect of the Y2O3 additive concentration on the properties of a silicon nitride ceramic substrate[J]. Ceramics International, 2016, 42(16): 18641-18647. [19] ATTIA M A A, EWAIS E M M. Hot pressed Si3N4 ceramics using MgO-Al2O3 as sintering additive for vehicle engine parts[J]. Refractories and Industrial Ceramics, 2020, 61(4): 384-392. [20] DAI Q J, HE D H, MENG F C, et al. Dielectric constant, dielectric loss and thermal conductivity of Si3N4 ceramics by hot pressing with CeO2-MgO as sintering aid[J]. Materials Science in Semiconductor Processing, 2021, 121: 105409. [21] PENG G H, JIANG G J, LI W L, et al. Fabrication of hard and strong α/β-Si3N4 composites with MgSiN2 as addivitives[J]. Journal of the American Ceramic Society, 2006, 89(12): 3824-3826. [22] 秦笑威, 谢志鹏, 姚依旦, 等. 氮化硅陶瓷的烧结技术及其应用进展[J]. 陶瓷学报, 2022, 43(6): 971-986. QIN X W, XIE Z P, YAO Y D, et al. Progress in sintering technology and applications of silicon nitride ceramics[J]. Journal of Ceramics, 2022, 43(6): 971-986 (in Chinese). [23] 高 震, 银锐明, 李 光, 等. 烧结方式对氮化硅陶瓷性能的影响[J]. 中国陶瓷工业, 2024, 31(3): 47-53. GAO Z, YIN R M, LI G, et al. Effect of sintering method on the properties of silicon nitride ceramics[J]. China Ceramic Industry, 2024, 31(3): 47-53 (in Chinese). [24] HIRAO K, WATARI K, BRITO M E, et al. High thermal conductivity in silicon nitride with anisotropie microstructure[J]. Journal of the American Ceramic Society, 1996, 79(9): 2485-2488. [25] KITAYAMA M, HIRAO K, TSUGE A, et al. Thermal conductivity of β-Si3N4: II, effect of lattice oxygen[J]. Journal of the American Ceramic Society, 2000, 83(8): 1985-1992. [26] CHEN H B, WANG W D, YU X, et al. The effect of annealing temperature on flexural strength, dielectric loss and thermal conductivity of Si3N4 ceramics[J]. Journal of Alloys and Compounds, 2020, 813: 152203. [27] KITAYAMA M, HIRAO K, TORIYAMA M, et al. Thermal conductivity of β-Si3N4: I, effects of various microstructural factors[J]. Journal of the American Ceramic Society, 1999, 82(11): 3105-3112. [28] LI Y X, HAN W B, CHEN G Q, et al. Influence of CeO2 addition on Si3N4 ceramics[J]. Materials Research Innovations, 2015, 19(supplement 1): 339-342. [29] LIU X J, HUANG Z Y, GE Q M, et al. Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO-Al2O3-SiO2 as sintering additive[J]. Journal of the European Ceramic Society, 2005, 25(14): 3353-3359. [30] 文科林, 栾道成, 左城铭, 等. 烧结助剂及增强相对氮化硅陶瓷材料性能的影响[J]. 中国陶瓷, 2021, 57(8): 26-32. WEN K L, LUAN D C, ZUO C M, et al. Effect of sintering additives and reinforcement on properties of silicon nitride ceramic materials[J]. China Ceramics, 2021, 57(8): 26-32 (in Chinese). [31] DREW P, LEWIS M H. The microstructures of silicon nitride ceramics during hot-pressing transformations[J]. Journal of Materials Science, 1974, 9(2): 261-269. [32] 魏 赛, PORZ L, 谢志鹏, 等. 环境温度及晶界相断裂韧性对氮化硅陶瓷桥接行为的影响[J]. 稀有金属材料与工程, 2015, 44(增刊1): 710-713. WEI S, PORZ L, XIE Z P, et al. Crack bridging in silicon nitride ceramics at various temperatures and grain boundary toughness[J]. Rare Metal Materials and Engineering, 2015, 44(supplement 1): 710-713 (in Chinese). [33] KITAYAMA M, HIRAO K, TSUGE A, et al. Oxygen content in β-Si3N4 crystal lattice[J]. Journal of the American Ceramic Society, 1999, 82(11): 3263-3265. |