[1] FANG C Q, ZHANG D. High areal energy density structural supercapacitor assembled with polymer cement electrolyte[J]. Chemical Engineering Journal, 2021, 426: 130793. [2] ZHANG Y Y, PAN Z H, ZHANG D. Regulating fast cationic redox for high areal-energy-density structural supercapacitors[J]. Journal of Energy Storage, 2024, 84: 110680. [3] ZHANG Y Y, ZHANG D. Polymer/cement composite electrolyte with high strength and high ionic conductivity for structural supercapacitors[J]. Cement and Concrete Composites, 2024, 149: 105512. [4] WANG J, ZHAN P M, ZHANG D, et al. Nickel cobalt sulfide composite nanosheet anchored on rGO as effective electrode for quasi-solid supercapacitor[J]. Journal of Energy Storage, 2023, 70: 107938. [5] SHI M Y, WANG L, ZHANG D. Implementation of durable structural supercapacitors with molybdate-ion-intercalated NiCo-LDH and polymer-cement composite[J]. Composites Part B: Engineering, 2025, 295: 112209. [6] SHI M Y, ZHANG D. Construction of hierarchical rGO@ZnNi@Ni nanosheet arrays and multiscale modified cementitious electrolytes toward scalable energy storage[J]. Chemical Engineering Journal, 2025, 511: 162014. [7] ZHANG Y Y, LI K B, ZHANG D. Redox polymer/cement electrolytes for structural supercapacitor with ultrahigh ionic conductivity and energy density[J]. Journal of Energy Storage, 2024, 94: 112444. [8] ZHANG Y Y, LI K B, ZHANG D. Priority of the effects of interface bonding and porosity on the energy storage capacity of structural supercapacitors[J]. Journal of Building Engineering, 2024, 88: 109144. [9] ZHANG Y Y, ZHANG D. High areal capacitance nickel-cobalt transition metal hydroxide/reduced graphene for structural supercapacitors[J]. Electrochimica Acta, 2024, 475: 143591. [10] SHI M Y, ZHANG D. 3D porous cementitious electrolytes with “stream-reservoir” ionic channels for high multifunctional performance structural supercapacitors[J]. Journal of Materials Chemistry A, 2024, 12(4): 2237-2248. [11] WANG Y Y, SUN S R, WU X L, et al. Status and opportunities of zinc ion hybrid capacitors: focus on carbon materials, current collectors, and separators[J]. Nano-Micro Letters, 2023, 15(1): 78. [12] SCRIVENER K L, NONAT A. Hydration of cementitious materials, present and future[J]. Cement and Concrete Research, 2011, 41(7): 651-665. [13] MENG Q L, CHUNG D D L. Battery in the form of a cement-matrix composite[J]. Cement and Concrete Composites, 2010, 32(10): 829-839. [14] OUELLETTE S A, TODD M D. Cement seawater battery energy harvester for marine infrastructure monitoring[J]. IEEE Sensors Journal, 2013, 14(3): 865-872. [15] CHEN Y H, LIN S C, WANG J A, et al. Preparation and characterization of geopolymer-based batteries with electrochemical impedance spectroscopy (EIS) and discharge performance[J]. Journal of the Electrochemical Society, 2018, 165(13): A3029-A3039. [16] WANG K, DI A D, ZHANG S, et al. Zinc anode based alkaline energy storage system: recent progress and future perspectives of zinc-silver battery[J]. Energy Storage Materials, 2024, 69: 103385. [17] LI H F, MA L T, HAN C P, et al. Advanced rechargeable zinc-based batteries: recent progress and future perspectives[J]. Nano Energy, 2019, 62: 550-587. [18] XIAO J B L, XI J X. The energy storage performance of nickel/cobalt-based materials in alkaline aqueous zinc battery[R]. 2023. [19] MENG X R, AHMAD M R, ZHU M Z, et al. Hydration mechanism and potential as solid-state electrolytes in sodium chloride-magnesium phosphate composite[J]. Cement and Concrete Composites, 2025, 156: 105862. [20] MENG X R, LIU M J, ZHU M Z, et al. A multifunctional solid-state electrolyte with high ionic conductivity based on Polyacrylic acid and Magnesium phosphate cement[J]. Composites Part B: Engineering, 2025, 303: 112606. [21] MENG X R, CHEN B, LIU M J, et al. Polyethylene oxide-magnesium phosphate cement composite as a high-performance solid-state electrolyte[J]. Cement and Concrete Composites, 2025, 163: 106197. [22] EL-GENDY D M, FARAG M M, ABDELRAOF M, et al. In-situ synthesized magnesium phosphate/bacterial nanocellulose composite as a sustainable material for high-performance symmetric supercapacitors[J]. Composites Science and Technology, 2025, 270: 111313. [23] LIN W, XING J R, ZHOU Y, et al. A biomimetic cement-based solid-state electrolyte with both high strength and ionic conductivity for self-energy-storage buildings[J]. Research, 2024, 7: 0379. [24] WANG F H, DU Y B, JIAO D, et al. Wood-inspired cement with high strength and multifunctionality[J]. Advanced Science, 2021, 8(3): 2000096. [25] CHEN Y, ZHENG Y, ZHOU Y, et al. Multi-layered cement-hydrogel composite with high toughness, low thermal conductivity, and self-healing capability[J]. Nature Communications, 2023, 14(1): 3438. |