[1] POONAM, PAREEK K, JANGID D K. Analysis of the effect of different factors on the degradation of supercapacitors[J]. Ionics, 2022, 28(10): 4527-4545. [2] TIAN J, ZHAO Z, KUMAR A, et al. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review[J]. Chemical Society Reviews, 2014, 43(20): 6920-6937. [3] LI N, HUANG G W, SHEN X J, et al. Controllable fabrication and magnetic-field assisted alignment of Fe3O4-coated Ag nanowires via a facile co-precipitation method[J]. Journal of Materials Chemistry C, 2013, 1(32): 4879-4884. [4] HUANG X, SUN R, LI Y, et al. Two-step electrodeposition synthesis of heterogeneous NiCo-layered double hydroxides@MoO3 nanocomposites on nickel foam with high performance for hybrid supercapacitors[J]. Electrochimica Acta, 2022, 403: 139680. [5] PANDIT B, GODA E S, ELELLA M H A, et al. One-pot hydrothermal preparation of hierarchical manganese oxide nanorods for high-performance symmetric supercapacitors[J]. Journal of Energy Chemistry, 2022, 65: 116-126. [6] KIM H S, ABBAS M A, KANG M S, et al. Study of the structure-properties relations of carbon spheres affecting electrochemical performances of EDLCs[J]. Electrochimica Acta, 2019, 304: 210-220. [7] BALDUCCI A, DUGAS R, TABERNA P L, et al. High temperature carbon-carbon supercapacitor using ionic liquid as electrolyte[J]. Journal of Power Sources, 2007, 165(2): 922-927. [8] WANG T, WANG Y, ZHANG D, et al. Structural tuning of a flexible and porous polypyrrole film by a template-assisted method for enhanced capacitance for supercapacitor applications[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 17726-17735. [9] SNOOK G A, KAO P, BEST A S. Conducting-polymer-based supercapacitor devices and electrodes[J]. Journal of Power Sources, 2011, 196(1): 1-12. [10] MOORTHI K, SIVAKUMAR B, CHOKKIAH B, et al. Morphological impact of perovskite-structured lanthanum cobalt oxide (LaCoO3) nanoflakes toward supercapacitor applications[J]. ACS Applied Nano Materials, 2024, 7(16): 18511-18522. [11] XUE J, LI W, SONG Y, et al. Visualization electrochromic-supercapacitor device based on porous Co doped NiO films[J]. Journal of Alloys and Compounds, 2021, 857(1): 158087. [12] LIU Y, JIANG S P, SHAO Z. Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development[J]. Materials Today Advances, 2020, 7: 100072. [13] PANDEY R, VATS G, YUN J, et al. Mutual insight on ferroelectrics and hybrid halide perovskites: a platform for future multifunctional energy conversion[J]. Advanced Materials, 2019, 31(43): 1807376. [14] KOSTOPOULOU A, KYMAKIS E, STRATAKIS E. Perovskite nanostructures for photovoltaic and energy storage devices[J]. Journal of Materials Chemistry A, 2018, 6(21): 9765-9798. [15] LANG X, MO H, HU X, et al. Supercapacitor performance of perovskite La1-xSrxMnO3[J]. Dalton Transactions, 2017, 46(40): 13720-13730. [16] MEFFORD J T, HARDIN W G, DAI S, et al. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes[J]. Nature Materials, 2014, 13(7): 726-732. [17] RICHTER J, HOLTAPPELS P, GRAULE T, et al. Materials design for perovskite SOFC cathodes[J]. Monatshefte Für Chemie - Chemical Monthly, 2009, 140(9): 985-999. [18] CAO J, WU S, HE J, et al. Research progress of high-entropy perovskite oxides in energy and environmental applications: a review[J]. Particuology, 2024, 95(12): 62-81. [19] PIKALOVA E Y, KALININA E G, PIKALOVA N S, et al. High-entropy materials in SOFC technology: theoretical foundations for their creation, features of synthesis, and recent achievements[J]. Materials, 2022, 15(24): 8783. [20] LI R, LI X, ZHANG J, et al. A high entropy stabilized perovskite oxide La0.2Pr0.2Sm0.2Gd0.2Sr0.2Co0.8Fe0.2O3-δ as a promising air electrode for reversible solid oxide cells[J]. Journal of Fuel Chemistry and Technology, 2025, 53(2): 282-289. [21] SARKAR A, VELASCO L, WANG D, et al. High entropy oxides for reversible energy storage[J]. Nature Communications, 2018, 9(1): 3400. [22] YU P, SUN X, LI Y, et al. Synthesis and electrochemical properties of high entropy titanate powders (La0.2X0.2Ba0.2Sr0.2Y0.2)TiO3 (X=Na or K, Y=Ca or Pb) with perovskite structure[J]. Ceramics International, 2024, 50(20): 38801-38807. [23] GUO M, LIU Y, ZHANG F, et al. Inactive Al3+-doped La(CoCrFeMnNiAlx)1/(5+x)O3 high-entropy perovskite oxides as high performance supercapacitor electrodes[J]. Journal of Advanced Ceramics, 2022, 11(5): 742-753. [24] NAN H, LV S, XU Z, et al. Inducing the cocktail effect in yolk-shell high-entropy perovskite oxides using an electronic structural design for improved electrochemical applications[J]. Chemical Engineering Journal, 2023, 452: 139501. [25] HAN N K, CHOI Y C, PARK D U, et al. Core-shell type composites based on polyimide-derived carbon nanofibers and manganese dioxide for self-standing and binder-free supercapacitor electrode applications[J]. Composites Science and Technology, 2020, 196: 108212. [26] KWON Y S, PARK G T, LEE J S, et al. Poly(ether amide)-derived, nitrogen self-doped, and interfused carbon nanofibers as free-standing supercapacitor electrode materials[J]. ACS Applied Energy Materials, 2021, 4(2): 1517-1526. [27] AHANGARI M, MAHMOUDI E, NIAEI A, et al. Investigation of structural and electrochemical properties of SrFexCo1-xO3-δ perovskite oxides as a supercapacitor electrode material[J]. Journal of Energy Storage, 2023, 63: 107034. [28] LIU Y, WANG Z, VEDER J P M, et al. Highly defective layered double perovskite oxide for efficient energy storage via reversible pseudocapacitive oxygen-anion intercalation[J]. Advanced Energy Materials, 2018, 8(11): 1702604. [29] LUO H, HU Q, YUE B, et al. Perovskite-type RCoO3 (R=Pr, Eu, Gd) nanofibers for supercapacitor electrodes and antiferromagnet[J]. Journal of Materials Science, 2024, 59(6): 2258-2272. [30] SUN X, HAO Z, NAN H, et al. Silver decorated lanthanum calcium manganate for electrochemical supercapacitor[J]. Materials Research Express, 2021, 8(7): 075502. [31] SHAFI P M, MOHAPATRA D, REDDY V P, et al. Sr- and Fe-substituted LaMnO3 perovskite: fundamental insight and possible use in asymmetric hybrid supercapacitor[J]. Energy Storage Materials, 2022, 45: 119-129. [32] CHEN P, LIU Y, JIAO Y, et al. Synthesis of LaMnO3-reduced graphene oxide or Sr composite and their application in electrochemical properties[J]. Materials Research Express, 2020, 7(2): 025023. [33] MAHIEDDINE A, ADNANE-AMARA L, GABOUZE N, et al. Self-combustion synthesis of dilithium cobalt bis (tungstate) decorated with silver nanoparticles for high performance hybrid supercapacitors[J]. Chemical Engineering Journal, 2021, 426: 131252. [34] YU D, WANG Y, ZHANG L, et al. Three-dimensional branched single-crystal β-Co(OH)2 nanowire array and its application for supercapacitor with excellent electrochemical property[J]. Nano Energy, 2014, 10: 153-162. |