[1] MSILA X, LABUSCHAGNE F, BARNARD W, et al. Radioactive nuclides in phosphogypsum from the lowveld region of South Africa[J]. South African Journal of Science, 2016, 112(1/2): 5. [2] 张 峻, 解维闵, 董雄波, 等. 磷石膏材料化综合利用研究进展[J]. 材料导报, 2023, 37(16): 167-178. ZHANG J, XIE W M, DONG X B, et al. Research progress on comprehensive utilization of phosphogypsum for materials: a review[J]. Materials Reports, 2023, 37(16): 167-178 (in Chinese). [3] 周 祥, 李 亮, 张晓敏, 等. 硅酸盐水泥熟料和硅灰对磷建筑石膏耐水性和水化行为的影响[J]. 新型建筑材料, 2023, 50(9): 77-81. ZHOU X, LI L, ZHANG X M, et al. Effect of silicate clinker and silica fume on water resistance and hydration behavior of phosphogypsum[J]. New Building Materials, 2023, 50(9): 77-81 (in Chinese). [4] WANG C Q, CHEN S, HUANG D M, et al. Safe environmentally friendly reuse of red mud modified phosphogypsum composite cementitious material[J]. Construction and Building Materials, 2023, 368: 130348. [5] DING C, SUN T, SHUI Z H, et al. Physical properties, strength, and impurities stability of phosphogypsum-based cold-bonded aggregates[J]. Construction and Building Materials, 2022, 331: 127307. [6] 吴赤球, 吕 伟, 孙 涛. 一种磷石膏轻骨料制备技术[J]. 混凝土与水泥制品, 2020(2): 98-100. WU C Q, LYU W, SUN T. A preparation technology of phosphogypsum lightweight aggregate[J]. China Concrete and Cement Products, 2020(2): 98-100 (in Chinese). [7] OUYANG G S, SUN T, YU Z C, et al. Investigation on macroscopic properties, leachability and microstructures of surface reinforced phosphogypsum-based cold-bonded aggregates[J]. Journal of Building Engineering, 2023, 69: 106305. [8] 陈 岩. 高强轻骨料混凝土配合比设计及性能研究[D]. 长春: 吉林大学, 2007. CHEN Y. Mix proportion design and performance study of high strength lightweight aggregate concrete[D]. Changchun: Jilin University, 2007 (in Chinese). [9] BIEGLER-KÖNIG F, BÄRMANN F. A learning algorithm for multilayered neural networks based on linear least squares problems[J]. Neural Networks, 1993, 6(1): 127-131. [10] 金 浏, 赵 瑞, 杜修力. 混凝土抗压强度尺寸效应的神经网络预测模型[J]. 北京工业大学学报, 2021, 47(3): 260-268. JIN L, ZHAO R, DU X L. Neural network prediction model of concrete compressive strength size effect[J]. Journal of Beijing University of Technology, 2021, 47(3): 260-268 (in Chinese). [11] 白浩杰, 刘元珍, 郭耀东, 等. 基于GA-BP神经网络的再生保温混凝土强度预测[J]. 混凝土, 2020(11): 16-19+25. BAI H J, LIU Y Z, GUO Y D, et al. Prediction of recycled aggregate thermal insulation concrete strength based on GA-BP neural network[J]. Concrete, 2020(11): 16-19+25 (in Chinese). [12] 赖泽涵, 宋 健, 付 军, 等. 基于神经网络结合遗传算法的混凝土弹模与强度性能预测[J]. 工程与建设, 2020, 34(2): 332-334. LAI Z H, SONG J, FU J, et al. Prediction of elastic modulus and strength performance of concrete based on neural network and genetic algorithm[J]. Engineering and Construction, 2020, 34(2): 332-334 (in Chinese). [13] DUAN Z H, KOU S C, POON C S. Prediction of compressive strength of recycled aggregate concrete using artificial neural networks[J]. Construction and Building Materials, 2013, 40: 1200-1206. [14] 梁宁慧, 游秀菲, 曹郭俊, 等. 基于机器学习的高温后聚丙烯纤维混凝土强度预测[J]. 硅酸盐通报, 2021, 40(2): 455-464. LIANG N H, YOU X F, CAO G J, et al. Strength prediction of mechanical properties of polypropylene fiber reinforced concrete after high temperature based on machine learning[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(2): 455-464 (in Chinese). [15] 苏 磊, 柯海山. 基于深度学习的电池SOC分阶段估算[J]. 信息技术与信息化, 2023(8): 199-203. SU L, KE H S. Phased estimation of battery SOC based on deep learning[J]. Information Technology and Informatization, 2023(8): 199-203 (in Chinese). [16] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016 (in Chinese). [17] 赵子祥, 陈立明, 姚琳宁, 等. 基于BP神经网络的机制砂混凝土抗压强度预测[J]. 工业控制计算机, 2024, 37(8): 57-58+60. ZHAO Z X, CHEN L M, YAO L N, et al. Prediction of compressive strength of mechanical sand concrete based on BP neural network[J]. Industrial Control Computer, 2024, 37(8): 57-58+60 (in Chinese). [18] 陈 明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013. CHEN M. The principle and examples of MATLAB neural network[M]. Beijing: Tsinghua University Press, 2013 (in Chinese). [19] 薛 辉, 张荣花. 普通混凝土抗折强度试验研究[J]. 黑龙江八一农垦大学学报, 2013, 25(2): 17-21+29. XUE H, ZHANG R H. Experiment study on flexural strength of ordinary concrete[J]. Journal of Heilongjiang Bayi Agricultural University, 2013, 25(2): 17-21+29 (in Chinese). [20] 康雪儿, 黄 赟, 刘 刚, 等. 可溶性磷对大掺量磷石膏胶凝材料水化过程的影响[J]. 硅酸盐通报, 2024, 43(9): 3303-3312. KANG X E, HUANG Y, LIU G, et al. Effect of soluble phosphorus on hydration process of high content phosphogypsum cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(9): 3303-3312 (in Chinese). [21] 刘爱平, 吴赤球, 水中和, 等. 高掺量磷石膏水硬性胶凝材料组成设计与性能调节[J]. 硅酸盐通报, 2024, 43(3): 1003-1011. LIU A P, WU C Q, SHUI Z H, et al. Composition design and property regulation of high content phosphogypsum hydraulic cementing material[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(3): 1003-1011 (in Chinese). [22] 郑波涛, 谭 旺, 郭广银, 等. 大掺量磷石膏泡沫轻质土的制备[J]. 新型建筑材料, 2023, 50(8): 79-83. ZHENG B T, TAN W, GUO G Y, et al. Preparation of foamed lightweight soil with large amount of phosphogypsum[J]. New Building Materials, 2023, 50(8): 79-83 (in Chinese). [23] GAO S, GUO J, ZHU Y G, et al. Study on the influence of the properties of interfacial transition zones on the performance of recycled aggregate concrete[J]. Construction and Building Materials, 2023, 408: 133592. |