欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (5): 1656-1665.DOI: 10.16552/j.cnki.issn1001-1625.2024.1258

• 水泥混凝土 • 上一篇    下一篇

基于机器学习的磷石膏轻骨料混凝土配合比设计与力学性能研究

苏瑛1,2, 龚伟1,2, 刘川北3, 张俊1,2   

  1. 1.西南科技大学制造过程测试技术教育部重点实验室,绵阳 621010;
    2.西南科大四川天府新区创新研究院,成都 621010;
    3.西南科技大学材料与化学学院,绵阳 621010
  • 收稿日期:2024-10-22 修订日期:2024-11-19 发布日期:2025-05-20
  • 通信作者: 龚 伟,博士,教授。E-mail:jszxgw@163.com
  • 作者简介:苏 瑛(2000—),女,硕士研究生。主要从事工业固废的研究。E-mail:767442261@qq.com
  • 基金资助:
    四川省国际科技合作项目(2021YFH0089)

Mix Ratio Design and Mechanical Properties of Phosphogypsum Lightweight Aggregate Concrete Based on Machine Learning

SU Ying1,2, GONG Wei1,2, LIU Chuanbei3, ZHANG Jun1,2   

  1. 1. Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China;
    2. Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 621010, China;
    3. School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China
  • Received:2024-10-22 Revised:2024-11-19 Online:2025-05-20

摘要: 采用磷石膏轻粗骨料替代天然碎石制备轻骨料混凝土,是实现磷石膏资源综合利用的有效技术。本文结合轻骨料混凝土的配合比设计原理与BP神经网络模型,提出了一种预测小粒径磷石膏轻骨料混凝土力学性能的方法。结果表明,混凝土的抗压强度和劈裂抗拉强度随着净水灰比升高而减小,随着砂率升高而增大,随着水泥用量升高略有降低,三种影响因素的显著程度次序为净水灰比、砂率、水泥用量。适当减小净水灰比,采用高砂率和低水泥用量可以减少界面过渡区孔隙和初始微裂纹的产生,并使整体力学强度提升。构建的BP神经网络模型对小粒径磷石膏轻骨料混凝土力学强度预测的准确度较高。本研究旨在为磷石膏轻骨料混凝土配合比设计优化和力学强度预测提供借鉴。

关键词: 磷石膏轻骨料, 混凝土, 抗压强度, 劈裂抗拉强度, BP神经网络, 微观分析

Abstract: Using phosphogypsum lightweight coarse aggregate instead of natural gravel to prepare lightweight aggregate concrete is an effective technology to realize the comprehensive utilization of phosphogypsum resources. Based on the mix ratio design principle of lightweight aggregate concrete and BP neural network model, a method to predict the mechanical properties of small particle size phosphogypsum lightweight aggregate concrete was proposed. The results show that the compressive strength and splitting tensile strength of concrete decrease with the increase of net water cement ratio, increase with the increase of sand ratio, and decrease slightly with the increase of cement content. The order of significance of the three influencing factors is net water cement ratio, sand ratio and cement content. Appropriately reducing the net water cement ratio, using high sand ratio and low cement content can reduce the generation of pores and initial microcracks in the interfacial transition zone, and improve the overall mechanical strength. The constructed BP neural network model has a high accuracy in predicting the mechanical strength of small particle phosphogypsum lightweight aggregate concrete. The purpose of this study is to provide reference for mix ratio design optimization and mechanical strength prediction of phosphogypsum lightweight aggregate concrete.

Key words: phosphogypsum lightweight aggregate, concrete, compressive strength, splitting tensile strength, BP neural network, microanalysis

中图分类号: