硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (2): 501-514.DOI: 10.16552/j.cnki.issn1001-1625.20241118.003
李超1, 李志康2, 李新宇1, 黄永亮3, 王武1, 罗正东2, 李文佳1, 许福2
收稿日期:
2024-07-31
修订日期:
2024-10-15
出版日期:
2025-02-15
发布日期:
2025-02-28
通信作者:
许 福,博士,教授。E-mail:xufu@xtu.edu.cn
作者简介:
李 超(1980—),男,工程师。主要从事建筑工程施工与研究工作。E-mail:15428126@qq.com
基金资助:
LI Chao1, LI Zhikang2, LI Xinyu1, HUANG Yongliang3, WANG Wu1, LUO Zhengdong2, LI Wenjia1, XU Fu2
Received:
2024-07-31
Revised:
2024-10-15
Published:
2025-02-15
Online:
2025-02-28
摘要: 地聚物是一类由活性硅铝酸盐前驱体经化学激发反应形成的无机胶凝材料,具有力学性能优异、耐久性好等优点。这类新型胶凝材料的开发和应用有利于传统水泥工业低碳化发展。但在地聚物制备过程中,经常出现新拌混凝土凝结时间难以控制的问题,限制了其推广与应用。本文总结了影响地聚物凝结硬化的众多因素,如硅铝质原材料的物理化学性质,激发剂的种类、浓度和模数,水含量等内在因素,以及养护温度和外加剂等外在因素,详细讨论了各因素对地聚物凝结硬化特性的影响规律及作用机制,并指出了地聚物凝结硬化未来的研究方向。
中图分类号:
李超, 李志康, 李新宇, 黄永亮, 王武, 罗正东, 李文佳, 许福. 地聚物凝结硬化特性影响因素研究综述[J]. 硅酸盐通报, 2025, 44(2): 501-514.
LI Chao, LI Zhikang, LI Xinyu, HUANG Yongliang, WANG Wu, LUO Zhengdong, LI Wenjia, XU Fu. Review on Factors Affecting Setting and Hardening Characteristics of Geopolymers[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 501-514.
[1] DAVIDOVITS J. Chemistry of geopolymeric systems, terminology[C]//Proceedings of 2nd International Conference on Geopolymer 99, Saint Quentin, 1999: 9-37. [2] PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44: 299-327. [3] DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. [4] YIN B, KANG T H, KANG J T, et al. Analysis of active ion-leaching behavior and the reaction mechanism during alkali activation of low-calcium fly ash[J]. International Journal of Concrete Structures and Materials, 2018, 12(1): 50. [5] PROVIS J L, VAN DEVENTER J S J. Geopolymerisation kinetics: reaction kinetic modelling[J]. Chemical Engineering Science, 2007, 62(9): 2318-2329. [6] YAO X, ZHANG Z H, ZHU H J, et al. Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry[J]. Thermochimica Acta, 2009, 493(1/2): 49-54. [7] LI C, SUN H H, LI L T. A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements[J]. Cement and Concrete Research, 2010, 40(9): 1341-1349. [8] ZHANG Z. The effects of physical and chemical properties of fly ash on the manufacture of geopolymer foam concretes[D]. Toowoomba: University of Southern Queensland, 2014. [9] 王爱国, 王星尧, 孙道胜, 等. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 5-14. WANG A G, WANG X Y, SUN D S, et al. Research progress on setting and hardening of geopolymers and their control[J]. Materials Reports, 2021, 35(13): 5-14 (in Chinese). [10] 贺 敏, 仰宗宝, 李兆超, 等. 酸激发地质聚合物反应机理与力学性能研究进展[J]. 硅酸盐通报, 2023, 42(10): 3579-3593. HE M, YANG Z B, LI Z C, et al. Research progress on reaction mechanism and mechanical properties of aluminosilicate phosphate geopolymers[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3579-3593 (in Chinese). [11] 王 晴, 康升荣, 吴丽梅, 等. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061. WANG Q, KANG S R, WU L M, et al. Structural modeling and molecular dynamics simulation of geopolymers gel[J]. Materials Reports, 2020, 34(4): 4056-4061 (in Chinese). [12] 陈迎晓. 矿渣-偏高岭土基地聚合物凝结时间可控性研究[D]. 重庆: 重庆大学, 2018. CHEN Y X. Study on controllability of setting time of polymer in slag-metakaolin base[D]. Chongqing: Chongqing University, 2018 (in Chinese). [13] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, SOBRADOS I, et al. The role played by the reactive alumina content in the alkaline activation of fly ashes[J]. Microporous and Mesoporous Materials, 2006, 91(1/2/3): 111-119. [14] SAGOE-CRENTSIL K, WENG L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part II. high Si/Al ratio systems[J]. Journal of Materials Science, 2007, 42(9): 3007-3014. [15] STEVESON M, SAGOE-CRENTSIL K. Relationships between composition, structure and strength of inorganic polymers[J]. Journal of Materials Science, 2005, 40(8): 2023-2036. [16] WHITE C E, PROVIS J L, PROFFEN T, et al. Molecular mechanisms responsible for the structural changes occurring during geopolymerization: multiscale simulation[J]. AIChE Journal, 2012, 58(7): 2241-2253. [17] CHEN X, SUTRISNO A, STRUBLE L J. Effects of calcium on setting mechanism of metakaolin-based geopolymer[J]. Journal of the American Ceramic Society, 2018, 101(2): 957-968. [18] KENNE DIFFO B B, ELIMBI A, CYR M, et al. Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers[J]. Journal of Asian Ceramic Societies, 2015, 3(1): 130-138. [19] CHEN X, SUTRISNO A, ZHU L Y, et al. Setting and nanostructural evolution of metakaolin geopolymer[J]. Journal of the American Ceramic Society, 2017, 100(5): 2285-2295. [20] MO B H, ZHU H, CUI X M, et al. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers[J]. Applied Clay Science, 2014, 99: 144-148. [21] CHENG T W, CHIU J P. Fire-resistant geopolymer produced by granulated blast furnace slag[J]. Minerals Engineering, 2003, 16(3): 205-210. [22] 南相莉, 张廷安, 刘 燕, 等. 我国赤泥综合利用分析[J]. 过程工程学报, 2010, 10(增刊1): 264-270. NAN X L, ZHANG T A, LIU Y, et al. Analysis of comprehensive utilization of red mud in China[J]. The Chinese Journal of Process Engineering, 2010, 10(supplement 1): 264-270 (in Chinese). [23] KAYA K, SOYER-UZUN S. Evolution of structural characteristics and compressive strength in red mud-metakaolin based geopolymer systems[J]. Ceramics International, 2016, 42(6): 7406-7413. [24] LIU J P, LI X Y, LU Y S, et al. Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer[J]. Construction and Building Materials, 2020, 263: 120653. [25] HE J, ZHANG J H, YU Y Z, et al. The strength and microstructure of two geopolymers derived from metakaolin and red mud-fly ash admixture: a comparative study[J]. Construction and Building Materials, 2012, 30: 80-91. [26] SINGH S, ASWATH M U, RANGANATH R V. Effect of mechanical activation of red mud on the strength of geopolymer binder[J]. Construction and Building Materials, 2018, 177: 91-101. [27] KUMAR A, KUMAR S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization[J]. Construction and Building Materials, 2013, 38: 865-871. [28] BAYAT A, HASSANI A, YOUSEFI A A. Effects of red mud on the properties of fresh and hardened alkali-activated slag paste and mortar[J]. Construction and Building Materials, 2018, 167: 775-790. [29] DUXSON P, MALLICOAT S W, LUKEY G C, et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292(1): 8-20. [30] ZHAO Y B, YANG C Q, LI K F, et al. Toward understanding the activation and hydration mechanisms of composite activated coal gangue geopolymer[J]. Construction and Building Materials, 2022, 318: 125999. [31] CHENG Y, MA H Q, CHEN H Y, et al. Preparation and characterization of coal gangue geopolymers[J]. Construction and Building Materials, 2018, 187: 318-326. [32] GENG J J, ZHOU M, ZHANG T, et al. Preparation of blended geopolymer from red mud and coal gangue with mechanical co-grinding preactivation[J]. Materials and Structures, 2016, 50(2): 109. [33] TEMUUJIN J, VAN RIESSEN A. Effect of fly ash preliminary calcination on the properties of geopolymer[J]. Journal of Hazardous Materials, 2009, 164(2/3): 634-639. [34] TEMUUJIN J, VAN RIESSEN A, WILLIAMS R. Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 82-88. [35] PULIGILLA S, CHEN X, MONDAL P. Does synthesized C-S-H seed promote nucleation in alkali activated fly ash-slag geopolymer binder?[J]. Materials and Structures, 2019, 52(4): 65. [36] LEE W K W, VAN DEVENTER J S J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements[J]. Cement and Concrete Research, 2002, 32(4): 577-584. [37] WATTIMENA O K, ANTONI, HARDJITO D. A review on the effect of fly ash characteristics and their variations on the synthesis of fly ash based geopolymer[C]//AIP Conference Proceedings. East Java, Indonesia, 2017. [38] FERNÁNDEZ-JIMÉNEZ A, PALOMO A, CRIADO M. Microstructure development of alkali-activated fly ash cement: a descriptive model[J]. Cement and Concrete Research, 2005, 35(6): 1204-1209. [39] ZHANG Z H, PROVIS J L, ZOU J, et al. Toward an indexing approach to evaluate fly ashes for geopolymer manufacture[J]. Cement and Concrete Research, 2016, 85: 163-173. [40] WIJAYA S W, HARDJITO D. Factors affecting the setting time of fly ash-based geopolymer[J]. Materials Science Forum, 2016, 841: 90-97. [41] LI Z P, XU G, SHI X M. Reactivity of coal fly ash used in cementitious binder systems: a state-of-the-art overview[J]. Fuel, 2021, 301: 121031. [42] 刘 鑫, 彭泽川, 潘晨豪, 等. 纳米二氧化硅改性粉煤灰地聚合物力学性能及微观分析[J]. 材料导报, 2020, 34(22): 22078-22082. LIU X, PENG Z C, PAN C H, et al. Mechanical properties and microscopic analysis of nano-silica modified fly ash geopolymer[J]. Materials Reports, 2020, 34(22): 22078-22082 (in Chinese). [43] XU X Q, BAO S X, ZHANG Y M, et al. Role of particle fineness and reactive silicon-aluminum ratio in mechanical properties and microstructure of geopolymers[J]. Construction and Building Materials, 2021, 313: 125483. [44] MUSADDIQ LASKAR S, TALUKDAR S. Development of ultrafine slag-based geopolymer mortar for use as repairing mortar[J]. Journal of Materials in Civil Engineering, 2017, 29(5): 04016292. [45] TALLING B, BRANDSTETR J. Present state and future of alkali-activated slag concretes[C]//Fly Ash, silica fume, slag, and natural pozzolans in concrete: proceedings of the third international conference. American Concrete Institute, 1989: 1591-1546. [46] BEN HAHA M, LOTHENBACH B, LE SAOUT G, et al. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag: part I: effect of MgO[J]. Cement and Concrete Research, 2011, 41(9): 955-963. [47] 梁健俊, 马玉玮, 黄 科, 等. 粉煤灰物理化学性能对碱激发材料的影响[J]. 硅酸盐通报, 2016, 35(8): 2497-2502. LIANG J J, MA Y W, HUANG K, et al. Influence of the physical and chemical properties of fly ash on the alkali-activated fly ash/slag[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(8): 2497-2502 (in Chinese). [48] ALEX T C, MUCSI G, VENUGOPALAN T, et al. BOF steel slag: critical assessment and integrated approach for utilization[J]. Journal of Sustainable Metallurgy, 2021, 7(4): 1407-1424. [49] SHI C J, QIAN J S. High performance cementing materials from industrial slags: a review[J]. Resources, Conservation and Recycling, 2000, 29(3): 195-207. [50] IONESCU B A, LĂZĂRESCU A V, HEGYI A. The possibility of using slag for the production of geopolymer materials and its influence on mechanical performances: a review[J]. Proceedings, 2020, 63(1): 30. [51] JIANG Y, LING T C, SHI C J, et al. Characteristics of steel slags and their use in cement and concrete: a review[J]. Resources, Conservation and Recycling, 2018, 136: 187-197. [52] GUO X L, SHI H S. Utilization of steel slag powder as a combined admixture with ground granulated blast-furnace slag in cement based materials[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1990-1993. [53] MIAH M J, PATOARY M M H, PAUL S C, et al. Enhancement of mechanical properties and porosity of concrete using steel slag coarse aggregate[J]. Materials, 2020, 13(12): 2865. [54] SAXENA S, TEMBHURKAR A R. Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete[J]. Construction and Building Materials, 2018, 165: 126-137. [55] BAI T, SONG Z G, WU Y G, et al. Influence of steel slag on the mechanical properties and curing time of metakaolin geopolymer[J]. Ceramics International, 2018, 44(13): 15706-15713. [56] SONG W, ZHU Z, PU S, et al. Efficient use of steel slag in alkali-activated fly ash-steel slag-ground granulated blast furnace slag ternary blends[J]. Construction and Building Materials, 2020, 259: 119814. [57] WANG Y H, XIAO R, HU W, et al. Effect of granulated phosphorus slag on physical, mechanical and microstructural characteristics of class F fly ash based geopolymer[J]. Construction and Building Materials, 2021, 291: 123287. [58] GONG C M, YANG N R. Effect of phosphate on the hydration of alkali-activated red mud-slag cementitius material[J]. Cement and Concrete Research, 2000, 30(7): 1013-1016. [59] 王全林. 不同养护方式下偏高岭土基地聚合物的制备及其性能研究[D]. 绍兴: 绍兴文理学院, 2021. WANG Q L. Preparation and properties of metakaolin-based polymers under different curing methods[D]. Shaoxing: Shaoxing University, 2021 (in Chinese). [60] PERNÁ I, HANZLÍČEK T. The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method[J]. Journal of Cleaner Production, 2016, 112: 1150-1155. [61] 刘 洋. 偏高岭土基地质聚合物在高温固井中应用的可行性研究[D]. 东营: 中国石油大学(华东), 2016. LIU Y. Feasibility study on application of metakaolin-based geopolymer in high temperature cementing[D]. Dongying: China University of Petroleum (Huadong), 2016 (in Chinese). [62] KUMAR S, KUMAR R, MEHROTRA S P. Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer[J]. Journal of Materials Science, 2010, 45(3): 607-615. [63] TOPARK-NGARM P, CHINDAPRASIRT P, SATA V. Setting time, strength, and bond of high-calcium fly ash geopolymer concrete[J]. Journal of Materials in Civil Engineering, 2015, 27(7): 04014198. [64] CHINDAPRASIRT P, CHAREERAT T, HATANAKA S, et al. High-strength geopolymer using fine high-calcium fly ash[J]. Journal of Materials in Civil Engineering, 2011, 23(3): 264-270. [65] ZHANG Y J, ZHAO Y L, LI H H, et al. Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag[J]. Journal of Materials Science, 2008, 43(22): 7141-7147. [66] 祝 贺. 碱矿渣基地质聚合物的制备及其高温性能研究[D]. 南宁: 广西大学, 2016. ZHU H. The preparation and high temperature performance research of alkali slag based geopolymer materials[D]. Nanning: Guangxi University, 2016 (in Chinese). [67] ISHWARYA G, SINGH B, DESHWAL S, et al. Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes[J]. Cement and Concrete Composites, 2019, 97: 226-238. [68] 林鹏程. 横山矿区低钙煤矸石制备地聚合物实验研究[D]. 西安: 西安科技大学, 2021. LIN P C. Experimental study on preparation of geopolymer from low calcium coal gangue in Hengshan mining area[D]. Xi’an: Xi’an University of Science and Technology, 2021 (in Chinese). [69] SONG W L, ZHU Z D, PENG Y Y, et al. Effect of steel slag on fresh, hardened and microstructural properties of high-calcium fly ash based geopolymers at standard curing condition[J]. Construction and Building Materials, 2019, 229: 116933. [70] 王 磊, 李金丞, 张晓伟, 等. 地质聚合物激发剂及其激发原理[J]. 无机盐工业, 2022, 54(2): 16-20. WANG L, LI J C, ZHANG X W, et al. Geopolymer activator and its excitation principle[J]. Inorganic Chemicals Industry, 2022, 54(2): 16-20 (in Chinese). [71] RAHIER H, WASTIELS J, BIESEMANS M, et al. Reaction mechanism, kinetics and high temperature transformations of geopolymers[J]. Journal of Materials Science, 2007, 42(9): 2982-2996. [72] MALKAWI A B, NURUDDIN M F, FAUZI A, et al. Effects of alkaline solution on properties of the HCFA geopolymer mortars[J]. Procedia Engineering, 2016, 148: 710-717. [73] YUAN J K, LI L Z, HE P G, et al. Effects of kinds of alkali-activated ions on geopolymerization process of geopolymer cement pastes[J]. Construction and Building Materials, 2021, 293: 123536. [74] DUXSON P, LUKEY G C, SEPAROVIC F, et al. Effect of alkali cations on aluminum incorporation in geopolymeric gels[J]. Industrial & Engineering Chemistry Research, 2005, 44(4): 832-839. [75] XU H, VAN DEVENTER J S J. The geopolymerisation of alumino-silicate minerals[J]. International Journal of Mineral Processing, 2000, 59(3): 247-266. [76] HE J, JIE Y X, ZHANG J H, et al. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites[J]. Cement and Concrete Composites, 2013, 37: 108-118. [77] NANA A, NGOUNÉ J, KAZE R C, et al. Room-temperature alkaline activation of feldspathic solid solutions: development of high strength geopolymers[J]. Construction and Building Materials, 2019, 195: 258-268. [78] LING Y F, WANG K J, WANG X H, et al. Effects of mix design parameters on heat of geopolymerization, set time, and compressive strength of high calcium fly ash geopolymer[J]. Construction and Building Materials, 2019, 228: 116763. [79] PARK S, POUR-GHAZ M. What is the role of water in the geopolymerization of metakaolin?[J]. Construction and Building Materials, 2018, 182: 360-370. [80] ZHANG Z H, XIAO Y, ZHU H J, et al. Role of water in the synthesis of calcined kaolin-based geopolymer[J]. Applied Clay Science, 2009, 43(2): 218-223. [81] LIEW Y M, KAMARUDIN H, MUSTAFA AL BAKRI A M, et al. Calcined kaolin geopolymeric powder: influence of water-to-geopolymeric powder ratio[J]. Advanced Materials Research, 2012, 548: 48-53. [82] RANGAN B V. Fly ash-based geopolymer concrete[D]. Perth: Curtin University of Technology, 2008. [83] 李 款, 卢都友, 李孟浩, 等. 水用量对偏高岭土基地聚合物微观结构及反应过程的影响[J]. 硅酸盐学报, 2016, 44(2): 226-231. LI K, LU D Y, LI M H, et al. Effect of water content on microstructure and reaction process of metakaolin-based geopolymers[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 226-231 (in Chinese). [84] SLEIMAN H, PERROT A, AMZIANE S. A new look at the measurement of cementitious paste setting by Vicat test[J]. Cement and Concrete Research, 2010, 40(5): 681-686. [85] WU M M, SHEN W G, XIONG X, et al. Effects of the phosphogypsum on the hydration and microstructure of alkali activated slag pastes [J]. Construction and Building Materials, 2023, 368: 130391. [86] BERNAL S A, PROVIS J L, FERNÁNDEZ-JIMÉNEZ A, et al. Binder chemistry-high-calcium alkali-activated materials[M]. Dordrecht: Springer Netherlands, 2013: 59-91. [87] WANG J W, CHENG T W. Production geopolymer materials by coal fly ash[C]//Proceedings of the 7th International Symposium on East Asian Resources Recycling Technology, 2003: 263-266. [88] ROVNANÍK P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer[J]. Construction and Building Materials, 2010, 24(7): 1176-1183. [89] BURCIAGA-DÍAZ O, GÓMEZ-ZAMORANO L Y, ESCALANTE-GARCÍA J I. Influence of the long term curing temperature on the hydration of alkaline binders of blast furnace slag-metakaolin[J]. Construction and Building Materials, 2016, 113: 917-926. [90] PULIGILLA S, MONDAL P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer[J]. Cement and Concrete Research, 2013, 43: 70-80. [91] KUENZEL C, RANJBAR N. Dissolution mechanism of fly ash to quantify the reactive aluminosilicates in geopolymerisation[J]. Resources, Conservation and Recycling, 2019, 150: 104421. [92] RANJBAR N, KUENZEL C. Cenospheres: a review[J]. Fuel, 2017, 207: 1-12. [93] ZHANG Z H, YAO X, ZHU H J, et al. Activating process of geopolymer source material: kaolinite[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2009, 24(1): 132-136. [94] LANCELLOTTI I, CATAURO M, PONZONI C, et al. Inorganic polymers from alkali activation of metakaolin: effect of setting and curing on structure[J]. Journal of Solid State Chemistry, 2013, 200: 341-348. [95] ZHANG Z H, YAO X, ZHU H J. Potential application of geopolymers as protection coatings for marine concrete II. microstructure and anticorrosion mechanism[J]. Applied Clay Science, 2010, 49(1/2): 7-12. [96] RANJBAR N, KASHEFI A, MAHERI M R. Hot-pressed geopolymer: dual effects of heat and curing time[J]. Cement and Concrete Composites, 2018, 86: 1-8. [97] DO Q M, NGO P M, NGUYEN H T. Characteristics of a fly ash-based geopolymer cured in microwave oven[J]. Key Engineering Materials, 2020, 850: 63-69. [98] 张志强, 周栋梁, 李付刚, 等. 碱-矿渣水泥缓凝物质的选择研究[J]. 混凝土, 2008(8): 63-64+68. ZHANG Z Q, ZHOU D L, LI F G, et al. Selection of retarder of alkali activated slag cement[J]. Concrete, 2008(8): 63-64+68 (in Chinese). [99] RATTANASAK U, PANKHET K, CHINDAPRASIRT P. Effect of chemical admixtures on properties of high-calcium fly ash geopolymer[J]. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(3): 364-369. [100] LEA F M, HEWLETT P C A L. Lea’s chemistry of cement and concrete[M]. Array Kidlington, Oxford: Butterworth-Heinemann, 2019. [101] TAYLOR H F W. Cement chemistry[M]. 2nd ed. London: Thomas Telford, 1997. [102] WANG L, GEDDES D A, WALKLEY B, et al. The role of zinc in metakaolin-based geopolymers[J]. Cement and Concrete Research, 2020, 136: 106194. [103] CONG X Y, ZHOU W, GENG X R, et al. Low field NMR relaxation as a probe to study the effect of activators and retarders on the alkali-activated GGBFS setting process[J]. Cement and Concrete Composites, 2019, 104: 103399. [104] ZHANG L L, JI Y S, LI J, et al. Effect of retarders on the early hydration and mechanical properties of reactivated cementitious material[J]. Construction and Building Materials, 2019, 212: 192-201. [105] DU W F, KURAOKA K, AKAI T, et al. Study of Al2O3 effect on structural change and phase separation in Na2O-B2O3-SiO2 glass by NMR[J]. Journal of Materials Science, 2000, 35(19): 4865-4871. [106] SASAKI K, KURUMISAWA K, IBAYASHI K. Effect of retarders on flow and strength development of alkali-activated fly ash/blast furnace slag composite[J]. Construction and Building Materials, 2019, 216: 337-346. [107] JAMIL N N B. The Effect of natural retarder on geopolymer concrete with different curing regime[D]. Tronoh: Universiti Teknologi Petronas, 2010. [108] ASSI L N, DEAVER E, ZIEHL P. Using sucrose for improvement of initial and final setting times of silica fume-based activating solution of fly ash geopolymer concrete[J]. Construction and Building Materials, 2018, 191: 47-55. [109] PHOO-NGERNKHAM T, CHINDAPRASIRT P, SATA V, et al. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature[J]. Materials & Design, 2014, 55: 58-65. [110] XIE T Y, FANG C F. Nanomaterials applied in modifications of geopolymer composites: a review[J]. Australian Journal of Civil Engineering, 2019, 17(1): 32-49. |
[1] | 褚丽晶, 卓柯先, 杨泽铭, 李潮森, 刘润安, 林嘉祥. 混杂PE/PVA纤维EGC与混凝土的界面粘结性能试验研究[J]. 硅酸盐通报, 2025, 44(2): 463-473. |
[2] | 加瑞, 楚振兴. 地质聚合物加固软土的研究现状与进展[J]. 硅酸盐通报, 2025, 44(2): 490-500. |
[3] | 姚忠樱, 崔鸽, 任瑞康, 任佳乐, 常逸文, 张洪波, 旷峰华. 活性金属法对非氧化物陶瓷封接适用性及其作用机理分析[J]. 硅酸盐通报, 2025, 44(2): 690-699. |
[4] | 陆俊辉, 吕海, 李钧源, 杨海峰, 曹化一. 方铝合金管-海水海砂地聚物混凝土的界面黏结滑移性能[J]. 硅酸盐通报, 2025, 44(1): 90-100. |
[5] | 张震洋, 张璐, 伊海赫, 郑润, 马克顺, 张琳, 任梦琪, 王春光. 基于响应面法的地聚物混凝土力学性能试验研究[J]. 硅酸盐通报, 2024, 43(9): 3192-3202. |
[6] | 牛家栋, 杜运兴, 张自成, 李艳秋, 秦宝坤. 矿渣基地聚物流态盾构固化土的性能研究[J]. 硅酸盐通报, 2024, 43(6): 2176-2185. |
[7] | 黄大建, 王治武, 唐文捷, 张全超, 强小虎. 养护环境对偏高岭土基地聚物性能及微观结构的影响[J]. 硅酸盐通报, 2024, 43(4): 1463-1471. |
[8] | 郭强, 张晓雷, 史晨曦, 门杰. 赤泥-矿渣基地聚物固化黄土冻融后力学特性研究[J]. 硅酸盐通报, 2024, 43(4): 1482-1489. |
[9] | 蒋明屾, 李飞, 周理安, 宁佳蕊, 张政. 碳酸钠、氢氧化钠与水玻璃复合激发对地聚物胶凝材料性能的影响[J]. 硅酸盐通报, 2024, 43(3): 929-937. |
[10] | 段立伟, 罗安邦, 陈英豪, 王德辉, 罗正东. 偏高岭土-磷酸基地聚物的力学性能及微观结构分析[J]. 硅酸盐通报, 2024, 43(10): 3694-6703. |
[11] | 张永杰, 李嘉兵, 邓沛宇, 龙康, 甘泽同, 田湘. 矿渣-粉煤灰地聚物注浆材料配比优化方法研究[J]. 硅酸盐通报, 2024, 43(10): 3726-3735. |
[12] | 张海霞, 董昊. 地聚物混凝土干燥收缩性能及活性氧化镁补偿收缩研究[J]. 硅酸盐通报, 2024, 43(1): 219-226. |
[13] | 刘刚, 李心诚, 刘金军, 蹇守卫, 范璐璐, 涂亮亮. 碱激发垃圾焚烧底灰地聚物的制备及其水化特性研究[J]. 硅酸盐通报, 2024, 43(1): 287-294. |
[14] | 曾铭乐, 王志祥. 固废基道路地聚物注浆材料的组分优化及机理研究[J]. 硅酸盐通报, 2023, 42(8): 3033-3044. |
[15] | 陈曦平, 王诏田, 罗洪杰, 程岩, 吴林丽, 姜昊. 粉煤灰基多孔地聚物的结构及过滤性能[J]. 硅酸盐通报, 2023, 42(6): 2081-2091. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 41
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||