[1] 毛昭元, 高凯强, 史晓琪. 水力压裂陶粒支撑剂的研究现状[J]. 佛山陶瓷, 2022, 32(7): 1-5+8. MAO Z Y, GAO K Q, SHI X Q. Research status of hydro-fracturing ceramic proppant[J]. Foshan Ceramics, 2022, 32(7): 1-5+8 (in Chinese). [2] 关舒文. 水力裂缝内支撑剂多孔介质导流能力的影响机制[D]. 太原: 太原理工大学, 2021. GUAN S W. Influence mechanism of proppant porous media conductivity in hydraulic fractures[D]. Taiyuan: Taiyuan University of Technology, 2021 (in Chinese). [3] 毕思峰, 曾永明, 杨沛鹏. 石油压裂支撑剂的研究现状[J]. 山东化工, 2023, 52(6): 76-78. BI S F, ZENG Y M, YANG P P. Research progress of petroleum fracturing proppants[J]. Shandong Chemical Industry, 2023, 52(6): 76-78 (in Chinese). [4] 沈渭滨, 赵之晗. 支撑剂嵌入对致密砂岩储层裂缝导流能力的影响[J]. 能源化工, 2022, 43(1): 48-51. SHEN W B, ZHAO Z H. Influence of proppant embedment on fracture conductivity of tight sandstone reservoirs[J]. Energy Chemical Industry, 2022, 43(1): 48-51 (in Chinese). [5] 雷俊雄, 陈锦风, 林泽钦, 等. 低密度支撑剂技术及研究现状[J]. 化工管理, 2020(26): 46-47. LEI J X, CHEN J F, LIN Z Q, et al. Low density proppant technology and its research status[J]. Chemical Enterprise Management, 2020(26): 46-47 (in Chinese). [6] KUMAR G S, PATWARDHAN S D, GUNAJI R G. Impact of proppant diagenesis on shale gas productivity[J]. International Journal of Oil, Gas and Coal Technology, 2017, 14(1/2): 147. [7] ELSARAWY A M, NASR EL DIN H A. Proppant diagenesis in carbonate-rich eagle ford shale fractures[J]. SPE Drilling & Completion, 2020: 35(3): 465-477. [8] MITTAL A, RAI C, SONDERGELD C. Proppant-conductivity testing under simulated reservoir conditions: impact of crushing, embedment, and diagenesis on long-term production in shales[J]. SPE Journal, 2018, 23(4): 1304-1315. [9] GUPTA A K, RAI C S, SONDERGELD C H. Experimental investigation of propped fracture conductivity and proppant diagenesis[C]//Proceedings of the 7th Unconventional Resources Technology Conference. Amsterdam: Elsevier, 2019. [10] RAYSONI N, WEAVER J. Long-term proppant performance[C]//SPE International Symposium on Formation Damage Control. Amsterdam: Elsevier, 2012(1): 162-177. [11] AVEN N K, WEAVER J, LOGHRY R, et al. Long-term dynamic flow testing of proppants and effect of coatings[C]//SPE-European Formation Damage Conference. Amsterdam: Elsevier, 2013(1): 344-365. [12] YU J Y, WANG J H, WANG S G, et al. Conductivity evolution in propped fractures during reservoir drawdown[J]. Rock Mechanics and Rock Engineering, 2022, 55(6): 3583-3597. [13] PATWARDHAN S D. Shale gas productivity: a geo-chemical diagenesis perspective[C]//Proceedings-SPE Annual Technical Conference and Exhibition, Amsterdam: Elsevier, 2015: 6860-6878. [14] Interaational Organization for Standardization. Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations: ISO 13503-2—2006[S]. Switzerland: International Organization for Standardization, 2006: 21-23. [15] 国家能源局. 水力压裂和砾石充填作业用支撑剂性能测试方法: SY/T 5108—2014[S]. 北京: 石油工业出版社, 2015. National Energy Administration. Proppant performance test method for hydraulic fracturing and gravel packing operations: SY/T 5108—2014[S]. Bejing: Petroleum Industry Press, 2015 (in Chinese). [16] 邱镁钫, 张青艳, 郑宇轩. 氧化铝陶瓷压缩破坏过程离散元数值模拟[J]. 硅酸盐通报, 2022, 41(9): 3296-3303. QIU M F, ZHANG Q Y, ZHENG Y X. Discrete element simulations on compressive fragmentation of alumina ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(9): 3296-3303 (in Chinese). [17] 付绿平, 黄 奥, 顾华志, 等. 纳米氧化铝超塑性及其对轻量刚玉材料微结构的影响[J]. 陶瓷学报, 2018, 39(1): 20-23. FU L P, HUANG A, GU H Z, et al. Superplasticity of nano-alumina and its effect on the microstructure of microporous alumina[J]. Journal of Ceramics, 2018, 39(1): 20-23 (in Chinese). [18] 郭会师, 陈文亮, 李文凤, 等. 烧结温度对莫来石多孔陶瓷结构与性能的影响[J]. 耐火材料, 2023, 57(1): 10-14. GUO H S, CHEN W L, LI W F, et al. Effects of sintering temperatures on microstructure and properties of mullite porous ceramics[J]. Refractories, 2023, 57(1): 10-14 (in Chinese). [19] 梁天成, 严玉忠, 蒙传幼, 等. 水力压裂用支撑剂破碎率的影响因素分析[J]. 重庆科技学院学报(自然科学版), 2021, 23(3): 10-14+44. LIANG T C, YAN Y Z, MENG C Y, et al. Analysis of influence factor of the proppants crush resistance in hydraulic fracturing[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2021, 23(3): 10-14+44 (in Chinese). [20] 王丽萍, 郭昭华, 池君洲, 等. 氧化铝多用途开发研究进展[J]. 无机盐工业, 2015, 47(6): 11-15+62. WANG L P, GUO Z H, CHI J Z, et al. Progress in multipurpose research and development of multiform alumina[J]. Inorganic Chemicals Industry, 2015, 47(6): 11-15+62 (in Chinese). |