[1] BAISDEN P A, CHOPPIN G R. Nuclear waste management and the nuclear fuel cycle[J]. Radiochemistry and Nuclear Chemistry, 2007: 1-63. [2] VIENNA J D. Nuclear waste vitrification in the United States: recent developments and future options[J]. International Journal of Applied Glass Science, 2010, 1(3): 309-321. [3] LIN K H. An overview of radioactive waste management technology development current status and trends[J]. Journal of Environmental Science and Health Part A: Environmental Science and Engineering and Toxicology, 1991, 26(3): 373-393. [4] PEGG I L. Turning nuclear waste into glass[J]. Physics Today, 2015, 68(2): 33-39. [5] PLODINEC M. Borosilicate glasses for nuclear waste immobilisation[J]. Glass Technology, 2000, 41: 186-192. [6] DONALD I W, METCALFE B, TAYLOR R. The immobilization of high level radioactive wastes using ceramics and glasses[J]. Journal of Materials Science, 1997, 32: 5851-5887. [7] 李玉松,张生栋,鲜 亮,等.CIAE高放废液固化技术研发进展[J].原子能科学技术,2020,54(s1):126-136. LI Y S, ZHANG S D, XIAN L, et al. Progress in research and development of vitrification technology for high-level radioactive liquid waste at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(s1): 126-136 (in Chinese). [8] VOGEL W. Phase separation in glass[J]. Journal of Non-Crystalline Solids, 1977, 25(1/2/3): 170-214. [9] 杨永刚,张振涛,华小辉,等.模拟高放玻璃固化体的析晶行为[J].核化学与放射化学,2014,36(5):317-320. YANG Y G, ZHANG Z T, HUA X H, et al. Crystallization of the simulated HLW glass[J]. Journal of Nuclear and Radiochemistry, 2014, 36(5): 317-320 (in Chinese). [10] 刘丽君,李 扬,徐建华.模拟高放废物玻璃固化体析晶率的测定[J].世界核地质科学,2014,31(1):376-381. LIU L J, LI Y, XU J H. Quantify the extent of crystallization in simulated high level waste glass[J].World Nuclear Geoscience, 2014, 31(1): 376-381 (in Chinese). [11] LUCKSCHEITER B, NESOVIC M. Development of glasses for the vitrification of high level liquid waste (HLLW) in a joule heated ceramic melter[J]. Waste Management, 1996, 16(7): 571-578. [12] KIM D S, HRMA P, SMITH D E, et al. Crystallization in simulated glasses from Hanford high-level nuclear waste composition range[R]. Pacific Northwest Laboratory. 1993. [13] CAHN J W. Phase separation by spinodal decomposition in isotropic systems[J]. The Journal of Chemical Physics, 1965, 42(1): 93-99. [14] SUZUKI M, TANAKA T. Materials design for the fabrication of porous glass using phase separation in multi-component borosilicate glass[J]. ISIJ International, 2008, 48(11): 1524-1532. [15] PARKINSON B G, HOLLAND D, SMITH M E, et al. Quantitative measurement of Q3 species in silicate and borosilicate glasses using Raman spectroscopy[J]. Journal of Non-Crystalline Solids, 2008, 354(17): 1936-1942. [16] SAIKI K, SAKIDA S, BENINO Y, et al. Phase separation of borosilicate glass containing sulfur[J]. Journal of the Ceramic Society of Japan, 2010, 118(1379): 603-607. [17] LU X N, SUN R F, HUANG L P, et al. Effect of vanadium oxide addition on thermomechanical behaviors of borosilicate glasses: toward development of high crack resistant glasses for nuclear waste disposal[J]. Journal of Non-Crystalline Solids, 2019, 515: 88-97. [18] MCKEOWN D A, MULLER I S, MATLACK K S, et al. X-ray absorption studies of vanadium valence and local environment in borosilicate waste glasses using vanadium sulfide, silicate, and oxide standards[J]. Journal of Non-Crystalline Solids, 2002, 298(2/3): 160-175. [19] TRIBAUDINO M, MANTOVANI L, BERSANI D, et al. Raman spectroscopy of (Ca,Mg)MgSi2O6 clinopyroxenes[J]. American Mineralogist, 2012, 97(8/9): 1339-1347. |