硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 145-155.DOI: 10.16552/j.cnki.issn1001-1625.2025.0606
收稿日期:2025-06-23
修订日期:2025-10-09
出版日期:2026-01-20
发布日期:2026-02-10
作者简介:杨刚亮(1978—),男,副教授。主要从事文化遗产与石窟寺保护修复方面的研究。E-mail:Longmen2005@163.com
YANG Gangliang1,2(
), MIAO Xiaobin1, YAN Shaojun3
Received:2025-06-23
Revised:2025-10-09
Published:2026-01-20
Online:2026-02-10
摘要:
石窟寺的水害治理、文物修复等工作,对材料物理力学性能的匹配性、耐候性要求极高。偏高岭土(MK)是一种高活性火山灰材料,以其为原料制备的地聚物展现出优异的稳定性与耐候性,近年来被广泛应用于石窟寺保护工作。MK前驱体与碱性溶液混合,硅、铝四面体聚合形成Si—O—Al—O键合的初始聚合物,进一步缩聚形成稳定的三维网络状胶凝材料——偏高岭土基地聚物(MKG)。MKG的性能与MK原料本身组成、激活剂类型及温度等因素密切相关。然而,受制于盐碱控制、使用环境等,MKG在文物保护中的使用范围和实际性能发挥一般。因此,应结合材料研究进展和文物保护需求,推动提高MKG在文物保护中的应用效果。
中图分类号:
杨刚亮, 苗晓斌, 严绍军. 偏高岭土基地聚物研究进展及其在石窟寺保护中的应用[J]. 硅酸盐通报, 2026, 45(1): 145-155.
YANG Gangliang, MIAO Xiaobin, YAN Shaojun. Research Progress on Metakaolin-Based Geopolymers and Their Application in Conservation of Grottoes[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 145-155.
| Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | SO3 | TiO2 | Na2O | LOI |
|---|---|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 51.52 | 40.18 | 1.23 | 2.00 | 0.12 | 0.53 | 0 | 2.27 | 0.08 | 2.01 |
表1 偏高岭土典型化学成分[28]
Table 1 Typical chemical composition of MK[28]
| Composition | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | SO3 | TiO2 | Na2O | LOI |
|---|---|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 51.52 | 40.18 | 1.23 | 2.00 | 0.12 | 0.53 | 0 | 2.27 | 0.08 | 2.01 |
图5 激发剂浓度对MKG抗压强度和聚合反应放热过程的影响[37]
Fig.5 Effect of activator concentration on compressive strength of MKG and course of exothermic polymerization reaction[37]
图6 0%(质量分数)和10%(质量分数)掺量TiO2改性MKG表面微观特征[43]
Fig.6 Surface micro-characteristics of MKG modified with 0% (mass fraction) and 10% (mass fraction) TiO2 content[43]
| [1] | 王金华, 陈嘉琦. 我国石窟寺保护现状及发展探析[J]. 东南文化, 2018(1): 6-14+127-128. |
| WANG J H, CHEN J Q. Current status and future development of cave temples protection in China[J]. Southeast Culture, 2018(1): 6-14+127-128 (in Chinese). | |
| [2] | 王金华, 霍晓彤. 石窟寺保护关键科学问题及关键技术探讨[J]. 东南文化, 2021(1): 6-13. |
| WANG J H, HUO X T. A discussion on the key scientific and technological issues in cave temples protection[J]. Southeast Culture, 2021(1): 6-13 (in Chinese). | |
| [3] | 李宏松. 文物岩石材料劣化特征及评价方法[D]. 北京: 中国地质大学(北京), 2011. |
| LI H S. Character and evaluation method of historical rock deterioration[D]. Beijing: China University of Geosciences (Beijing), 2011 (in Chinese). | |
| [4] | 李 黎, 陈卫昌, 刘建辉, 等. 石窟寺岩体稳定性预测与加固关键问题[J]. 石窟与土遗址保护研究, 2022(1): 28-38. |
| LI L, CHEN W C, LIU J H, et al. Critical issues in grotto stability predication and its conservation technology[J]. Research on the Conservation of Cave Temples and Earthen Sites, 2022(1): 28-38 (in Chinese). | |
| [5] | 王旭东, 郭青林, 谌文武, 等. 石窟寺岩体保护加固研究进展[J]. 石窟与土遗址保护研究, 2022(1): 6-27. |
| WANG X D, GUO Q L, CHEN W W, et al. Advances in research on the conservation and reinforcement of cave temple rock structures[J]. Research on the Conservation of Cave Temples and Earthen Sites, 2022(1): 6-27 (in Chinese). | |
| [6] | 范 潇, 闫宏彬, 孟令松, 等. 云冈石窟第3窟后室顶板加固治理与监测[J]. 文物保护与考古科学, 2021, 33(2): 1-6. |
| FAN X, YAN H B, MENG L S, et al. Strengthening and monitoring of the back room roof at cave 3 of Yungang Grottoes[J]. Sciences of Conservation and Archaeology, 2021, 33(2): 1-6 (in Chinese). | |
| [7] | 李心坚. 龙门石窟保护中的灌浆技术[J]. 雕塑, 2008(6): 36-37. |
| LI X J. The grouting technique of protecting the Longmen Grottoes[J]. Sculpture, 2008(6): 36-37 (in Chinese). | |
| [8] | 陈建平, 高东亮. 龙门石窟小型坍塌窟龛的修复[J]. 文物保护与考古科学, 2008, 20(1): 50-54+79. |
| CHEN J P, GAO D L. The restoration of the collapsed small-sized caves and niches of Longmen Grottoes[J]. Sciences of Conservation and Archaeology, 2008, 20(1): 50-54+79 (in Chinese). | |
| [9] | 王逢睿. 基于胶结结构劣化的石窟岩石加固关键材料体系研发[D]. 兰州: 兰州大学, 2020. |
| WANG F R. Study on key material system for rock reinforcement of grottoes based on the degradation of cemented structure[D]. Lanzhou: Lanzhou University, 2020 (in Chinese). | |
| [10] | 陈嘉琦, 王金华, 严绍军, 等. 用于石窟岩体裂隙防渗的偏高岭土复合灌浆材料水化性能研究[J]. 硅酸盐通报, 2024, 43(2): 627-636. |
| CHEN J Q, WANG J H, YAN S J, et al. Hydration properties of metakaolin composite grouting materials for anti-seepage of grottoes rock fissures[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 627-636 (in Chinese). | |
| [11] | 廖紫慧, 王春连, 黄可可, 等. 中国高岭土矿床的分布、类型、应用及找矿远景[J]. 中国地质, 2025, 52(4): 1230-1246. |
| LIAO Z H, WANG C L, HUANG K K, et al. Distribution, types, applications and prospecting of kaolin deposits in China[J]. Geology in China, 2025, 52(4): 1230-1246 (in Chinese). | |
| [12] | 陈士堃. 偏高岭土基地聚物混凝土力学性能及微观机理研究[D]. 杭州: 浙江大学, 2019. |
| CHEN S K. Study on mechanical properties and microscopic mechanisms of the metakaolin-based geopolymer concrete[D]. Hangzhou: Zhejiang University, 2019 (in Chinese). | |
| [13] | 孙道胜, 王爱国, 胡普华. 地质聚合物的研究与应用发展前景[J]. 材料导报, 2009, 23(7): 61-65. |
| SUN D S, WANG A G, HU P H. Research of geopolymer and its applications and development prospects[J]. Materials Review, 2009, 23(7): 61-65 (in Chinese). | |
| [14] |
ZHANG Z H, ZHU H J, ZHOU C H, et al. Geopolymer from kaolin in China: an overview[J]. Applied Clay Science, 2016, 119: 31-41.
DOI URL |
| [15] |
HE P G, WANG M R, FU S, et al. Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer[J]. Ceramics International, 2016, 42(13): 14416-14422.
DOI URL |
| [16] | DAVIDOVITS J, CORDI S A. Synthesis of new high temperature geo-polymers for reinforced plastics/composites[J]. Spe Pactec, Society of Petroleum Engineers Journal, 1979(79): 151-154. |
| [17] |
SINGH B, ISHWARYA G, GUPTA M, et al. Geopolymer concrete: a review of some recent developments[J]. Construction and Building Materials, 2015, 85: 78-90.
DOI URL |
| [18] | DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. |
| [19] | DAVIDOVITS J. Properties of geopolymer cements[C]// Proceedings of the First International Conference on Alkaline Cements and Concretes. Kyiv: SRIBM, 1994: 131-149. |
| [20] |
KOMNITSAS K A. Potential of geopolymer technology towards green buildings and sustainable cities[J]. Procedia Engineering, 2011, 21: 1023-1032.
DOI URL |
| [21] |
HASSAN A, ARIF M, SHARIQ M. Use of geopolymer concrete for a cleaner and sustainable environment: a review of mechanical properties and microstructure[J]. Journal of Cleaner Production, 2019, 223: 704-728.
DOI URL |
| [22] |
WENG L, SAGOE-CRENTSIL K. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: part I: low Si/Al ratio systems[J]. Journal of Materials Science, 2007, 42(9): 2997-3006.
DOI URL |
| [23] |
SAGOE-CRENTSIL K, WENG L. Dissolution processes, hydrolysis and condensation reactions during geopolymer synthesis: Part II. High Si/Al ratio systems[J]. Journal of Materials Science, 2007, 42(9): 3007-3014.
DOI URL |
| [24] |
TEMUUJIN J, MINJIGMAA A, RICKARD W, et al. Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers[J]. Applied Clay Science, 2009, 46(3): 265-270.
DOI URL |
| [25] | KUENZEL C, NEVILLE T P, DONATELLO S, et al. Influence of metakaolin characteristics on the mechanical properties of geopolymers[J]. Applied Clay Science, 2013, 83: 308-314. |
| [26] | WANG F, KOVLER K, PROVIS J L, et al. Metakaolin[M]//DE BELIEN, SOUTSOSM, GRUYAERTE. Properties of fresh and hardened concrete containing supplementary cementitious materials: Vol. 25. Cham: Springer International Publishing, 2018: 153-179. |
| [28] |
AMBROISE J, MAXIMILIEN S, PERA J. Properties of metakaolin blended cements[J]. Advanced Cement Based Materials, 1994, 1(4): 161-168.
DOI URL |
| [29] | 王爱国, 孙道胜, 胡普华, 等. 碱激发偏高岭土制备土聚水泥的试验研究[J]. 合肥工业大学学报(自然科学版), 2008, 31(4): 617-621. |
| WANG A G, SUN D S, HU P H, et al. Experimental research on preparing geopolymeric cement with metakaolin activated by alkali activators[J]. Journal of Hefei University of Technology (Natural Science), 2008, 31(4): 617-621 (in Chinese). | |
| [30] |
ZHANG Z, WANG H, YAO X, et al. Effects of halloysite in Kaolin on the formation and properties of geopolymers[J]. Cement and Concrete Composites, 2012, 34(5): 709-715.
DOI URL |
| [31] | 诸华军, 姚 晓, 张祖华. 高岭土煅烧活化温度的初选[J]. 建筑材料学报, 2008, 11(5): 621-625. |
| ZHU H J, YAO X, ZHANG Z H. Optimization of calcined temperature for kaolin activation[J]. Journal of Building Materials, 2008, 11(5): 621-625 (in Chinese). | |
| [32] | 彭 晖, 崔 潮, 蔡春声, 等. 偏高岭土活性的煅烧温度影响及测定方法研究[J]. 硅酸盐通报, 2014, 33(8): 2078-2084+2094. |
| PENG H, CUI C, CAI C S, et al. Research on influence of calcination temperature on metakaolin reactivity and its determination[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(8): 2078-2084+2094 (in Chinese). | |
| [33] | 殷 慧, 柳华杰, 季成元, 等. 偏高岭土活性影响因素及其碱激发反应研究进展[J]. 钻井液与完井液, 2024, 41(4): 419-426. |
| YIN H, LIU H J, JI C Y, et al. Progress in studying affecting factors and alkaline-activated reaction of activity of metakaolin[J]. Drilling Fluid & Completion Fluid, 2024, 41(4): 419-426 (in Chinese). | |
| [34] |
ROCHA T D S, DIAS D P, FRANÇA F C C, et al. Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+)[J]. Construction and Building Materials, 2018, 178: 453-461.
DOI URL |
| [35] |
ALBIDAH A, ALGHANNAM M, ABBAS H, et al. Characteristics of metakaolin-based geopolymer concrete for different mix design parameters[J]. Journal of Materials Research and Technology, 2021, 10: 84-98.
DOI URL |
| [36] |
PROVIS J L, BERNAL S A. Geopolymers and related alkali-activated materials[J]. Annual Review of Materials Research, 2014, 44: 299-327.
DOI URL |
| [37] | 彭 晖, 崔 潮, 蔡春声, 等. 激发剂浓度对偏高岭土基地聚物性能的影响机制[J]. 复合材料学报, 2016, 33(12): 2952-2960. |
| PENG H, CUI C, CAI C S, et al. Mechanism of activator concentration influencing properties of metakaolin-based geopolymer[J]. Acta Materiae Compositae Sinica, 2016, 33(12): 2952-2960 (in Chinese). | |
| [38] |
KONG D L Y, SANJAYAN J G, SAGOE-CRENTSIL K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures[J]. Cement and Concrete Research, 2007, 37(12): 1583-1589.
DOI URL |
| [39] |
ROVNANÍK P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer[J]. Construction and Building Materials, 2010, 24(7): 1176-1183.
DOI URL |
| [40] | 彭 晖, 陈治坤, 崔 潮, 等. 偏高岭土基地聚物合成的固化温度影响机理[J]. 建筑材料学报, 2017, 20(3): 379-384. |
| PENG H, CHEN Z K, CUI C, et al. Influencing mechanism of curing temperature on synthesis of metakaolin-based geopolymer[J]. Journal of Building Materials, 2017, 20(3): 379-384 (in Chinese). | |
| [41] | ALOMAYRI T, SHAIKH F U A, LOW I M. Synthesis and mechanical properties of cotton fabric reinforced geopolymer composites[J]. Composites Part B: Engineering, 2014, 60: 36-42. |
| [42] |
YE H Z, ZHANG Y, YU Z M, et al. Effects of cellulose, hemicellulose, and lignin on the morphology and mechanical properties of metakaolin-based geopolymer[J]. Construction and Building Materials, 2018, 173: 10-16.
DOI URL |
| [43] |
AMBIKAKUMARI SANALKUMAR K U, YANG E H. Self-cleaning performance of nano-TiO2 modified metakaolin-based geopolymers[J]. Cement and Concrete Composites, 2021, 115: 103847.
DOI URL |
| [44] |
PHOO-NGERNKHAM T, CHINDAPRASIRT P, SATA V, et al. The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature[J]. Materials & Design, 2014, 55: 58-65.
DOI URL |
| [45] |
DUAN P, YAN C J, LUO W J, et al. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste[J]. Construction and Building Materials, 2016, 106: 115-125.
DOI URL |
| [46] | 严绍军, 皮 雷, 方 云, 等. 龙门石窟偏高岭土-超细水泥复合灌浆材料研究[J]. 石窟寺研究, 2013: 393-404. |
| YAN S J, PI L, FANG Y, et al. Research on metakaolin and micro fine cement composite grouting material in longmen grottoes[J]. Studies of the Cave Temples, 2013: 393-404 (in Chinese). | |
| [47] | 赵 莽, 严绍军, 何 凯, 等. 龙门石窟裂隙防渗灌浆新材料试验研究[J]. 长江科学院院报, 2016, 33(6): 115-123+128. |
|
ZHAO M, YAN S J, HE K, et al. Experimental study on novel grouting materials for fracture seepage of the Longmen Grottoes[J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(6): 115-123+128 (in Chinese).
DOI |
|
| [48] | 赵 莽, 方 云. 干湿循环条件下龙门石窟防渗灌浆材料耐久性试验研究[J]. 混凝土, 2019(1): 156-160. |
| ZHAO M, FANG Y. Experimental study on durability of impervious grouting material in Longmen Grottoes under dry-wet cycles[J]. Concrete, 2019(1): 156-160 (in Chinese). | |
| [49] | 王 捷, 王逢睿, 申喜旺, 等. 无机矿物聚合物应用于龙山石窟岩体裂隙加固的试验研究[J]. 新型建筑材料, 2017, 44(5): 58-62. |
| WANG J, WANG F R, SHEN X W, et al. Experimental research on application of inorganic mineral polymers in fissure reinforcement of Longshan grottoes[J]. New Building Materials, 2017, 44(5): 58-62 (in Chinese). | |
| [50] | 贺 鹏, 王 芬, 朱建锋, 等. 乐山大佛发髻修复材料失效机理分析[J]. 硅酸盐通报, 2020, 39(6): 1868-1873. |
| HE P, WANG F, ZHU J F, et al. Failure mechanism of hair curls repaired materials of the Leshan Giant Buddha[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1868-1873 (in Chinese). | |
| [51] | 贺 鹏. 偏高岭土-天然水硬性石灰胶凝材料的制备及其轻集料改性研究[D]. 西安: 陕西科技大学, 2020. |
| HE P. Study on preparation of metakaolin-natural hydraulic lime cementitious material and modification of light aggregate[D]. Xi’an: Shaanxi University of Science & Technology, 2020 (in Chinese). |
| [1] | 张争奇, 刘祉鑫, 芮照诚, 石杰荣, 杨新红. 地聚物稳定建筑固废再生集料性能研究[J]. 硅酸盐通报, 2025, 44(9): 3347-3354. |
| [2] | 朱义洋, 耿海宁, 李宗刚, 马浩森, 罗阳, 陈伟, 李秋. 地聚物轻质防火涂料制备及其防火性能研究[J]. 硅酸盐通报, 2025, 44(8): 3049-3060. |
| [3] | 杨凯璐, 杨鼎宜, 陆世敏, 陈龙祥, 毛翔, 赵健. 偏高岭土活性测定方法的比较与优化[J]. 硅酸盐通报, 2025, 44(7): 2514-2527. |
| [4] | 崔潮, 罗晨光, 邰文玉, 王岚, 彭晖. 活性Si/Al比对偏高岭土基地聚物地质聚合反应及抗压强度性能的影响[J]. 硅酸盐通报, 2025, 44(6): 2181-2192. |
| [5] | 骆展鹏, 熊春林, 韩泽军, 王胜新, 刘凯华. 矿渣-粉煤灰-玻璃粉复合固化盾构土力学性能及固化机制[J]. 硅酸盐通报, 2025, 44(5): 1803-1812. |
| [6] | 高英力, 熊浩宇, 冯心崚, 朱俊材, 赵福意. 混杂纤维单组分地聚物组成设计及纤维影响效应研究[J]. 硅酸盐通报, 2025, 44(4): 1357-1366. |
| [7] | 李超, 李志康, 李新宇, 黄永亮, 王武, 罗正东, 李文佳, 许福. 地聚物凝结硬化特性影响因素研究综述[J]. 硅酸盐通报, 2025, 44(2): 501-514. |
| [8] | 褚丽晶, 卓柯先, 杨泽铭, 李潮森, 刘润安, 林嘉祥. 混杂PE/PVA纤维EGC与混凝土的界面粘结性能试验研究[J]. 硅酸盐通报, 2025, 44(2): 463-473. |
| [9] | 加瑞, 楚振兴. 地质聚合物加固软土的研究现状与进展[J]. 硅酸盐通报, 2025, 44(2): 490-500. |
| [10] | 王兆辉, 王善伟, 王杰, 韩衍童, 代浩宇. 页岩陶粒对高延性地聚物复合材料性能的影响[J]. 硅酸盐通报, 2025, 44(12): 4384-4394. |
| [11] | 范厚朝, 朱杰, 吴海波, 张忠伦, 鄢自刚, 李林, 唐文铖. 偏高岭土基地聚合物改良土的冻胀融沉特性研究[J]. 硅酸盐通报, 2025, 44(12): 4395-4405. |
| [12] | 田爱平, 陈淑烨, 张林, 范琦琦, 杨绪明, 周嬴涛, 刘恒, 冯兴国. 砖砼混合再生骨料强化对其地聚物混凝土性能的影响[J]. 硅酸盐通报, 2025, 44(10): 3781-3790. |
| [13] | 陆俊辉, 吕海, 李钧源, 杨海峰, 曹化一. 方铝合金管-海水海砂地聚物混凝土的界面黏结滑移性能[J]. 硅酸盐通报, 2025, 44(1): 90-100. |
| [14] | 朱元浪, 张明亮, 魏京华, 张恒武, 刘子盼, 高嵩. 实海暴露环境再生混凝土三维逾渗特性研究[J]. 硅酸盐通报, 2025, 44(1): 274-288. |
| [15] | 张震洋, 张璐, 伊海赫, 郑润, 马克顺, 张琳, 任梦琪, 王春光. 基于响应面法的地聚物混凝土力学性能试验研究[J]. 硅酸盐通报, 2024, 43(9): 3192-3202. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||