硅酸盐通报 ›› 2026, Vol. 45 ›› Issue (1): 133-144.DOI: 10.16552/j.cnki.issn1001-1625.2025.0716
雷进生1,2(
), 谭嘉伟1,2, 史晓宇2, 雷俊杰2, 刘金鑫2
收稿日期:2025-07-22
修订日期:2025-09-05
出版日期:2026-01-20
发布日期:2026-02-10
作者简介:雷进生(1970—),男,博士,教授。主要从事水泥基复合材料性能及应用的研究。E-mail:lei-jinsheng@163.com
基金资助:
LEI Jinsheng1,2(
), TAN Jiawei1,2, SHI Xiaoyu2, LEI Junjie2, LIU Jinxin2
Received:2025-07-22
Revised:2025-09-05
Published:2026-01-20
Online:2026-02-10
摘要:
生态混凝土在濒水环境中需提升养分保持能力、延长肥效供应周期并增强生态恢复效能。利用具有肥效组分的材料制备养分缓释型骨料,以不同的营养骨料替代率置换天然粗骨料,制备了具有不同孔隙率的含营养骨料生态混凝土,测试含营养骨料生态混凝土在水环境中的营养物质释放量,分析孔隙率及营养骨料替代率对含营养骨料混凝土养分缓释性能、力学性能及透水性能的影响。同时,开展植生性能试验,探究生态混凝土的缓释性能对植生性能的影响。结果表明:造粒成型后的营养骨料通过稳定结构有效减缓营养物质流失,裹浆后在不阻断养分释放的前提下可以有效降低释放速率,实现肥效的缓释和长效供给;含营养骨料生态混凝土能够动态调控养分释放;在相同营养骨料替代率下,低孔隙率试件表现出更好的力学性能;孔隙率和营养骨料替代率可成为调控生态混凝土植生性能的重要指标。
中图分类号:
雷进生, 谭嘉伟, 史晓宇, 雷俊杰, 刘金鑫. 含营养骨料生态混凝土的养分缓释性能试验研究[J]. 硅酸盐通报, 2026, 45(1): 133-144.
LEI Jinsheng, TAN Jiawei, SHI Xiaoyu, LEI Junjie, LIU Jinxin. Experimental Study on Nutrient Slow-Release Performance of Nutrient Aggregate Ecological Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 133-144.
| Material | Fineness/% | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
|---|---|---|---|---|---|---|---|
| Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
| SAC | 2.4 | 15 | 30 | 5.7 | 7.5 | 38.4 | 46.2 |
表1 硫铝酸盐水泥的物理性能
Table 1 Physical properties of sulfoaluminate cement
| Material | Fineness/% | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
|---|---|---|---|---|---|---|---|
| Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
| SAC | 2.4 | 15 | 30 | 5.7 | 7.5 | 38.4 | 46.2 |
| Chemical composition | SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | K2O | Na2O | LOI |
|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 48.37 | 32.35 | 4.16 | 6.12 | 1.98 | 1.91 | 2.42 | 2.69 |
表2 粉煤灰的化学成分
Table 2 Chemical composition of fly ash
| Chemical composition | SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | K2O | Na2O | LOI |
|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 48.37 | 32.35 | 4.16 | 6.12 | 1.98 | 1.91 | 2.42 | 2.69 |
| Material | Fineness/% | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
|---|---|---|---|---|---|---|---|
| Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
| OPC | 2.1 | 132 | 180 | 5.2 | 8.8 | 29.2 | 54.4 |
表3 普通硅酸盐水泥的物理性能
Table 3 Physical properties of ordinary Portland cement
| Material | Fineness/% | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
|---|---|---|---|---|---|---|---|
| Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
| OPC | 2.1 | 132 | 180 | 5.2 | 8.8 | 29.2 | 54.4 |
| Material | Particle size/mm | Porosity/% | Apparent density/( kg·m-3) | Stacking density/( kg·m-3) | Water absorption/% |
|---|---|---|---|---|---|
| Crushed stone | 5~20 | 41.3 | 2 700 | 1 612 | 2.1 |
| 10~20 | 40.9 | 2 657 | 1 570 | 2.1 |
表4 粗集料的基本性能指标
Table 4 Basic performance indicators of coarse aggregates
| Material | Particle size/mm | Porosity/% | Apparent density/( kg·m-3) | Stacking density/( kg·m-3) | Water absorption/% |
|---|---|---|---|---|---|
| Crushed stone | 5~20 | 41.3 | 2 700 | 1 612 | 2.1 |
| 10~20 | 40.9 | 2 657 | 1 570 | 2.1 |
| Group | Mass fraction/% | ||||||
|---|---|---|---|---|---|---|---|
| AS | OPM | POM | OSRF | CRF | SSP | FeSO4 | |
| a | 60 | 25 | 5 | 3 | 3 | 2 | 2 |
| b | 55 | 25 | 10 | 3 | 3 | 2 | 2 |
表5 营养基材配合比
Table 5 Mix proportion of nutrient substrate
| Group | Mass fraction/% | ||||||
|---|---|---|---|---|---|---|---|
| AS | OPM | POM | OSRF | CRF | SSP | FeSO4 | |
| a | 60 | 25 | 5 | 3 | 3 | 2 | 2 |
| b | 55 | 25 | 10 | 3 | 3 | 2 | 2 |
| Sample | Mix proportion/(kg·m-3) | ||||||
|---|---|---|---|---|---|---|---|
| Cementing material(SAC) | Cementing material(FA) | Nutrient substrate(a) | Nutrient substrate (b) | Binder(SS) | Binder(PVAc) | Water | |
| N1 | 15 | 30 | 55 | — | 0.5 | — | 36 |
| N2 | 15 | — | — | 85 | — | 10.0 | 50 |
表6 营养骨料配合比
Table 6 Mix proportion of nutrient aggregates
| Sample | Mix proportion/(kg·m-3) | ||||||
|---|---|---|---|---|---|---|---|
| Cementing material(SAC) | Cementing material(FA) | Nutrient substrate(a) | Nutrient substrate (b) | Binder(SS) | Binder(PVAc) | Water | |
| N1 | 15 | 30 | 55 | — | 0.5 | — | 36 |
| N2 | 15 | — | — | 85 | — | 10.0 | 50 |
| Sample | Porosity/% | Mix proportion/(kg·m-3) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Nutrient aggregate | Aggregate | Sand | Cement | FA | Fortifier | Water | Water reducer | ||
| A1-0 | 25 | 0 | 1 538.0 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A1-10 | 25 | 104.0 | 1 384.2 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A1-20 | 25 | 208.0 | 1 230.4 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-0 | 25 | 0 | 1 538.0 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-10 | 25 | 65.0 | 1 384.2 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-20 | 25 | 130.0 | 1 230.4 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A3-0 | 20 | 0 | 1 579.0 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
| A3-10 | 20 | 65.0 | 1 380.1 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
| A3-20 | 20 | 130.0 | 1 222.2 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
表7 生态混凝土配合比
Table 7 Mix proportion of ecological concrete
| Sample | Porosity/% | Mix proportion/(kg·m-3) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Nutrient aggregate | Aggregate | Sand | Cement | FA | Fortifier | Water | Water reducer | ||
| A1-0 | 25 | 0 | 1 538.0 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A1-10 | 25 | 104.0 | 1 384.2 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A1-20 | 25 | 208.0 | 1 230.4 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-0 | 25 | 0 | 1 538.0 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-10 | 25 | 65.0 | 1 384.2 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-20 | 25 | 130.0 | 1 230.4 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A3-0 | 20 | 0 | 1 579.0 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
| A3-10 | 20 | 65.0 | 1 380.1 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
| A3-20 | 20 | 130.0 | 1 222.2 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
| Sample | Particle size/mm | 7 d compressive strength/MPa | 28 d compressive strength/MPa | Bulk density/ (kg·m-3) | Water absorption/% | pH value |
|---|---|---|---|---|---|---|
| N1 | 10~15 | 0.48 | 0.65 | 1 040 | 41.7 | 9.6 |
| N2 | 10~15 | 0.31 | 0.48 | 650 | 42.0 | 8.6 |
表8 营养骨料的基本性能
Table 8 Basic properties of nutrient aggregates
| Sample | Particle size/mm | 7 d compressive strength/MPa | 28 d compressive strength/MPa | Bulk density/ (kg·m-3) | Water absorption/% | pH value |
|---|---|---|---|---|---|---|
| N1 | 10~15 | 0.48 | 0.65 | 1 040 | 41.7 | 9.6 |
| N2 | 10~15 | 0.31 | 0.48 | 650 | 42.0 | 8.6 |
| [1] | 乔建刚, 董进国, 李明浩, 等. 生态混凝土植生与抗冲刷性能研究[J]. 硅酸盐通报, 2023, 42(3): 917-924. |
| QIAO J G, DONG J G, LI M H, et al. Study on planting performance and scouring resistance of eco-concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 917-924 (in Chinese). | |
| [2] | 金珊珊, 李傲东, 张 扬. 低碱再生骨料植生混凝土吸返水特性表征模型研究[J]. 硅酸盐通报, 2023, 42(5): 1814-1821. |
| JIN S S, LI A D, ZHANG Y. Characterization model of water absorption and reversion characteristic of low alkali recycled aggregate planting concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1814-1821 (in Chinese). | |
| [3] |
NIYOMUKIZA J B, EISAZADEH A, TANGTERMSIRIKUL S. Synergistic effect of calcined clay and fly ash on the performance of porous vegetation concrete[J]. Construction and Building Materials, 2025, 458: 139749.
DOI URL |
| [4] | ZHENG C W, ZHANG Z H, HUANG Z Y, et al. Review of porous vegetation eco-concrete (PVEC) technology: from engineering requirements to material design[J]. Composites Part B: Engineering, 2024, 279: 111442. |
| [5] | 张 瑞, 杨大伟, 吴 科, 等. CO2养护压力对植生混凝土碱度及力学性能的影响[J]. 硅酸盐通报, 2023, 42(10): 3499-3507. |
| ZHANG R, YANG D W, WU K, et al. Effect of CO2 curing pressure on alkalinity and mechanical properties of vegetated concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3499-3507 (in Chinese). | |
| [6] | 刘 平, 许艳平, 刘 飞, 等. 基于正交试验方法的植生混凝土性能研究[J]. 硅酸盐通报, 2024, 43(12): 4398-4405. |
| LIU P, XU Y P, LIU F, et al. Performance of vegetation-type concrete based on orthogonal experimental method[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(12): 4398-4405 (in Chinese). | |
| [7] |
MOHANTY S, SAHOO K, SAMAL K. Progress in sustainable vegetation eco-concrete technology: a review on materials, applications and challenges[J]. Journal of Building Engineering, 2025, 104: 112354.
DOI URL |
| [8] | YANG Y, LEI J S, WANG Q F, et al. Mechanical and vegetative performance of ecological concrete with nutrient aggregates[J]. Case Studies in Construction Materials, 2024, 20: e03210. |
| [9] | 陈 垚, 王重卿, 江世雄, 等. 基于再生骨料的多孔生态混凝土边坡防护及应用研究进展[J]. 水利水电技术(中英文), 2025, 56(增刊1): 768-775. |
| CHEN Y, WANG Z Q, JIANG S X, et al. Research review of slope protection and application of porous ecological concrete based on recycled aggregate[J]. Water Resources and Hydropower Engineering, 2025, 56(supplement 1): 768-775 (in Chinese). | |
| [10] |
LEI J G, SHI J M, GONG C C, et al. Study on green restoration of exposed mountain: effect of isobutylidene diurea on slow-release of total nitrogen and physiological characteristics of euonymus fortune in planted eco-concrete[J]. Construction and Building Materials, 2022, 359: 129460.
DOI URL |
| [11] |
TANG W, MOHSENI E, WANG Z Y. Development of vegetation concrete technology for slope protection and greening[J]. Construction and Building Materials, 2018, 179: 605-613.
DOI URL |
| [12] |
LI L B, CHEN M X, ZHOU X M, et al. Evaluation of the preparation and fertilizer release performance of planting concrete made with recycled-concrete aggregates from demolition[J]. Journal of Cleaner Production, 2018, 200: 54-64.
DOI URL |
| [13] | LI W C, ZHANG Q Y, LI L B, et al. Investigation on water and fertilizer retention properties of hydrated sulphoaluminate cement pastes modified by bentonite for porous ecological concrete[J]. Case Studies in Construction Materials, 2023, 18: e01967. |
| [14] |
WU C L, LIU C H, CHENG G Y, et al. Preparation of a low-carbon plant-compatible ecological concrete with fertilizer self-release characteristics based on multi-solid waste co-recycling and its environmental impact[J]. Journal of Building Engineering, 2023, 76: 107268.
DOI URL |
| [15] |
JIANG C B, LI J K, HU Y H, et al. Construction of water-soil-plant system for rainfall vertical connection in the concept of sponge city: a review[J]. Journal of Hydrology, 2022, 605: 127327.
DOI URL |
| [16] | 刘 军, 李振林, 张伟卓, 等. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18): 131-148. |
| LIU J, LI Z L, ZHANG W Z, et al. Research advances in cold-bonded artificial lightweight aggregates made from industrial solid waste materials[J]. Materials Reports, 2023, 37(18): 131-148 (in Chinese). | |
| [17] |
REN P F, LING T C, MO K H. Recent advances in artificial aggregate production[J]. Journal of Cleaner Production, 2021, 291: 125215.
DOI URL |
| [18] |
LEI J S, YANG Y, CHEN X H. Mechanics and permeability properties of ecological concrete mixed with recycled engineering muck particles[J]. Journal of Building Engineering, 2024, 91: 109560.
DOI URL |
| [19] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 建筑用卵石、碎石: GB/T 14685—2022[S]. 北京: 中国标准出版社, 2022. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Pebble and crushed stone for construction: GB/T 14685—2022[S]. Beijing: Standards Press of China, 2022 (in Chinese). | |
| [20] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 缓释肥料: GB/T 23348—2009[S]. 北京: 中国标准出版社, 2009. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Slow release fertilizer: GB/T 23348—2009[S]. Beijing: Standards Press of China, 2009 (in Chinese). | |
| [21] |
ZHU Y G, FU H, WANG P G, et al. Pore structure characteristics, mechanical properties, and freeze-thaw resistance of vegetation-pervious concrete with unsintered sludge pellets[J]. Construction and Building Materials, 2023, 382: 131342.
DOI URL |
| [22] |
ADRESI M, YAMANI A, KARIMAEI TABARESTANI M, et al. A comprehensive review on pervious concrete[J]. Construction and Building Materials, 2023, 407: 133308.
DOI URL |
| [23] |
ZHONG R, LENG Z, POON C S. Research and application of pervious concrete as a sustainable pavement material: a state-of-the-art and state-of-the-practice review[J]. Construction and Building Materials, 2018, 183: 544-553.
DOI URL |
| [24] | 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019 (in Chinese). | |
| [25] |
XIANG Y, LI C Y, HAO H B, et al. Performances of biodegradable polymer composites with functions of nutrient slow-release and water retention in simulating heavy metal contaminated soil: biodegradability and nutrient release characteristics[J]. Journal of Cleaner Production, 2021, 294: 126278.
DOI URL |
| [26] |
QIAO D L, LIU H S, YU L, et al. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer[J]. Carbohydrate Polymers, 2016, 147: 146-154.
DOI PMID |
| [27] | PHANG S W, SIN L T, BEE S T, et al. Release kinetic model of nitrogen released encapsulated in starch-alginate controlled released urea: diffusion and its decay release[C]// 13th International Engineering Research Conference (13th Eureca 2019), Selangor Darul Ehsan, Malaysia. AIP Publishing, 2020: 040006. |
| [28] |
NIU R J, HU J J, LIU J Y, et al. Controlled release fertilizer eco-concrete: utilization of solid waste for the sustainable cleaner products conducive to ecological construction[J]. Construction and Building Materials, 2025, 463: 140017.
DOI URL |
| [29] |
CLAUDINO G O, RODRIGUES G G O, ROHDEN A B, et al. Mix design for pervious concrete based on the optimization of cement paste and granular skeleton to balance mechanical strength and permeability[J]. Construction and Building Materials, 2022, 347: 128620.
DOI URL |
| [1] | 李顺凯, 窦华康, 孙凤品, 陈荣辉, 李杰. 模板表面粗糙度对混凝土制品表观质量的影响[J]. 硅酸盐通报, 2026, 45(1): 123-132. |
| [2] | 叶文康, 齐正, 叶艳丽, 何子君, 梅书霞, 谢峻林. 氮化硼陶瓷坯体片状颗粒随机堆积的离散元模拟研究[J]. 硅酸盐通报, 2025, 44(8): 2965-2976. |
| [3] | 黄胜, 孙江涛, 李志堂, 朱子龙, 沈卫国, 孙志军, 谭宗林, 王桂明. 抛填骨料混凝土单轴受压细观模拟研究[J]. 硅酸盐通报, 2025, 44(7): 2437-2446. |
| [4] | 张祥飞, 娄广辉, 张梦真, 尹蕊, 李静, 张碗玉, 张艺升. 以MnO2为发泡剂、Na2B4O7为助熔剂制备煤矸石基发泡陶瓷的研究[J]. 硅酸盐通报, 2025, 44(6): 2280-2288. |
| [5] | 何静, 吕伟, 吴赤球, 余正康, 李义胜, 水中和. 核壳结构磷石膏基骨料/硅酸盐水泥界面特性及其调控[J]. 硅酸盐通报, 2025, 44(2): 613-622. |
| [6] | 王海龙, 侯建华, 孙晓燕, 蔺喜强, 路兰. 3D打印混凝土抗碳化性能各向异性及成因分析[J]. 硅酸盐通报, 2024, 43(5): 1704-1712. |
| [7] | 黄大建, 王治武, 唐文捷, 张全超, 强小虎. 养护环境对偏高岭土基地聚物性能及微观结构的影响[J]. 硅酸盐通报, 2024, 43(4): 1463-1471. |
| [8] | 徐存东, 李博飞, 李准, 王海若, 曹骏, 徐慧. 早期受盐-冻耦合作用下掺玄武岩纤维混凝土耐久性劣化规律[J]. 硅酸盐通报, 2024, 43(3): 816-824. |
| [9] | 郭子荣, 杨鼎宜, 曹忠露, 贾向锋, 赵健, 陈龙祥, 毛翔. 混掺纤维水泥砂浆的高温性能研究[J]. 硅酸盐通报, 2024, 43(3): 851-865. |
| [10] | 刘平, 许艳平, 刘飞, 潘剑, 范志宏. 基于正交试验方法的植生混凝土性能研究[J]. 硅酸盐通报, 2024, 43(12): 4398-4405. |
| [11] | 余雷, 乔浩洋, 王国冀, 刘云柯, 任涛, 杨韬. 含初始孔隙的堆石混凝土动态抗压性能研究[J]. 硅酸盐通报, 2024, 43(11): 4036-4046. |
| [12] | 郭志翔, 王琴, 张秋臣, 郑海宇, 刘克俊. 氟化物对石膏基胶凝材料结构和性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3248-3257. |
| [13] | 刘沛, 姚素玲, 董宪姝, 付元鹏, 李德浩. 矿物掺合料透水混凝土微观结构及性能分析[J]. 硅酸盐通报, 2023, 42(7): 2504-2512. |
| [14] | 陈春红, 俞江, 刘荣桂, 王磊, 刘惠, 伍金龙. 干湿循环下再生细骨料混凝土的氯离子渗透性能[J]. 硅酸盐通报, 2023, 42(4): 1217-1225. |
| [15] | 乔建刚, 董进国, 李明浩, 刘翔, 李庆楼. 生态混凝土植生与抗冲刷性能研究[J]. 硅酸盐通报, 2023, 42(3): 917-924. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||