[1] 邓雨生, 郑文凯, 卢晓斌, 等. CFB锅炉粉煤灰工艺矿物学特性[J]. 洁净煤技术, 2023, 29(增刊2): 35-41. DENG Y S, ZHENG W K, LU X B, et al. Process mineralogical characteristics of CFB boiler fly ash[J]. Clean Coal Technology, 2023, 29(supplement 2): 35-41 (in Chinese). [2] 时雅倩, 关渝珊, 葛伟哲, 等. 粉煤灰建材化增值利用: 最新技术与未来展望[J]. 煤炭学报, 2024, 49(6): 2860-2875. SHI Y Q, GUAN Y S, GE W Z, et al. Value-added utilization of pulverized fuel ash as construction materials: state-of-the-art technologies and future prospects[J]. Journal of China Coal Society, 2024, 49(6): 2860-2875 (in Chinese). [3] 张楚杰, 王玉高, 姚振朝, 等. 粉煤灰矿化CO2研究进展[J]. 洁净煤技术, 2024, 30(2): 300-315. ZHANG C J, WANG Y G, YAO Z C, et al. Research progress of coal fly ash for CO2 mineralization process[J]. Clean Coal Technology, 2024, 30(2): 300-315 (in Chinese). [4] 姜 龙. 燃煤电厂粉煤灰综合利用现状及发展建议[J]. 洁净煤技术, 2020, 26(4): 31-39. JIANG L. Comprehensiveutilization situation of fly ash in coal-fired power plants and its development suggestions[J]. Clean Coal Technology, 2020, 26(4): 31-39 (in Chinese). [5] SIVALINGAM S, SEN S. Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X[J]. Applied Surface Science, 2018, 455: 903-910. [6] SENOL A, EDIL T B, BIN-SHAFIQUE M S, et al. Soft subgrades’ stabilization by using various fly ashes[J]. Resources, Conservation and Recycling, 2006, 46(4): 365-376. [7] 张忠坤, 侯学渊, 曹正康, 等. 粉煤灰与EPS路堤研究综述[J]. 岩石力学与工程学报, 2001, 20(4): 538-542. ZHANG Z K, HOU X Y, CAO Z K, et al. Review on coal ash and EPS used as filler of road embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(4): 538-542 (in Chinese). [8] 周 鑫, 高福宁, 任希庆, 等. CFB粉煤灰路基填料无侧限抗压强度试验研究[J]. 公路交通科技, 2021, 38(8): 30-36. ZHOU X, GAO F N, REN X Q, et al. Experimental study on unconfined compressive strength of CFB fly ash as subgrade material[J]. Journal of Highway and Transportation Research and Development, 2021, 38(8): 30-36 (in Chinese). [9] 王建平, 王文顺, 史天生. 人工冻结土体冻胀融沉的模型试验[J]. 中国矿业大学学报, 1999, 28(4): 303-306. WANG J P, WANG W S, SHI T S. Model experiment of frost heave and thawing settlement of artificially frozen soils[J]. Journal of China University of Mining & Technology, 1999, 28(4): 303-306 (in Chinese). [10] GAO J Q, LAI Y M, ZHANG M Y, et al. Experimental study on the water-heat-vapor behavior in a freezing coarse-grained soil[J]. Applied Thermal Engineering, 2018, 128: 956-965. [11] ZHANG Y Z, MA W, WANG T L, et al. Characteristics of the liquid and vapor migration of coarse-grained soil in an open-system under constant-temperature freezing[J]. Cold Regions Science and Technology, 2019, 165: 102793. [12] 张 升, 贺佐跃, 滕继东, 等. 非饱和土水汽迁移与相变: 两类“锅盖效应” 的试验研究[J]. 岩土工程学报, 2017, 39(5): 961-968. ZHANG S, HE Z Y, TENG J D, et al. Water vapor transfer and phase change in unsaturated soils: experimental study on two types of canopy effect[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 961-968 (in Chinese). [13] 贺佐跃, 张 升, 滕继东, 等. 冻土中气态水迁移及其对土体含水率的影响分析[J]. 岩土工程学报, 2018, 40(7): 1190-1197. HE Z Y, ZHANG S, TENG J D, et al. Vapour transfer and its effects on water content in freezing soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1190-1197 (in Chinese). [14] 张建勋, 毛雪松, 刘飞飞, 等. 单向冻结条件下非饱和土水分迁移规律研究[J]. 冰川冻土, 2023, 45(3): 1080-1091. ZHANG J X, MAO X S, LIU F F, et al. Study on water migration behavior of unsaturated soil under unidirectional freezing condition[J]. Journal of Glaciology and Geocryology, 2023, 45(3): 1080-1091 (in Chinese). [15] 张建勋, 毛雪松, 吴 谦. 冻融循环作用下路基结构水热汽迁移规律研究[J]. 冰川冻土, 2024, 46(1): 170-184. ZHANG J X, MAO X S, WU Q. Study on the law of water-heat-vapor migration in subgrade structure under freeze-thaw cycles[J]. Journal of Glaciology and Geocryology, 2024, 46(1): 170-184 (in Chinese). [16] 刘 杰, 陈建斌, 卢 正, 等. 非饱和黏土路基水汽运移与相变机制研究[J]. 土木工程学报, 2023, 56(S1): 152-159. LIU J, CHEN J B, LU Z, et al. Study on water-vapor migration and phase change mechanism of unsaturated clay subgrade[J]. China Civil Engineering Journal, 2023, 56(S1): 152-159 (in Chinese). [17] 刘倩倩, 蔡国庆, 秦宇腾, 等. 单向冻结条件下粗颗粒级配土的水热分布及冻胀特性研究[J]. 岩石力学与工程学报, 2023, 42(9): 2329-2340. LIU Q Q, CAI G Q, QIN Y T, et al. Experimental study on hydrothermal distribution and frost heave characteristics of coarse-grained graded soil under unidirectional freezing condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(9): 2329-2340 (in Chinese). [18] 张玉芝, 王天亮, 张 飞, 等. 不同细粒含量下高铁路基粗颗粒填料水气迁移特征与冻胀特性[J]. 中国铁道科学, 2021, 42(4): 1-8. ZHANG Y Z, WANG T L, ZHANG F, et al. Water-vapor migration and frost heave characteristics of coarse particle filler with different fine contents in high speed railway subgrade[J]. China Railway Science, 2021, 42(4): 1-8 (in Chinese). [19] 谭 龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(6): 1566-1572. TAN L, WEI C F, TIAN H H, et al. Experimental study of unfrozen water content of frozen soils by low-field nuclear magnetic resonance[J]. Rock and Soil Mechanics, 2015, 36(6): 1566-1572 (in Chinese). [20] 严宏伟, 文良东. 宁夏不同地区道路冻害典型特征及形成机制对比分析[J]. 公路交通科技, 2023, 40(4): 78-87. YAN H W, WEN L D. Comparative analysis on typical characteristics and formation mechanism of road frost damage in different regions of Ningxia[J]. Journal of Highway and Transportation Research and Development, 2023, 40(4): 78-87 (in Chinese). [21] 刘为民, 何 平, 张 钊. 土体导热系数的评价与计算[J]. 冰川冻土, 2002, 24(6): 770-773. LIU W M, HE P, ZHANG Z. A calculation method of thermal conductivity of soils[J]. Journal of Glaciolgy and Geocryology, 2002, 24(6): 770-773 (in Chinese). [22] 林 伟. 短时冻土区花岗岩残积土边坡水热力耦合仿真模拟[D]. 福州: 福州大学, 2015. LIN W. Hydro-thermal-mechanical coupled numerical simulation of granite residual soil slope in the short-term frozen soil zone[D]. Fuzhou: Fuzhou University, 2015 (in Chinese). [23] 赖远明, 吴紫汪, 朱元林, 等. 寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J]. 岩土工程学报, 1999, 21(5): 529-533. LAI Y M, WU Z W, ZHU Y L, et al. Nonlinear analyses for the couple problem of temperature, seepage and stress fields in cold region tunnels[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(5): 529-533 (in Chinese). [24] 白青波, 李 旭, 田亚护, 等. 冻土水热耦合方程及数值模拟研究[J]. 岩土工程学报, 2015, 37(增刊2): 131-136. BAI Q B, LI X, TIAN Y H, et al. Equations and numerical simulation for coupled water and heat transfer in frozen soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(supplement 2): 131-136 (in Chinese). [25] PRATIK S, VINAY A, MANAVENDRA G, et al. Experimental evaluation of specific heat carrying capacity of fly-ash reinforced aluminium 6061 composite[J]. International Research Journal of Engineering and Technology. 2015, 2(9): 56-72. [26] CHOO H, WON J, BURNS S E. Thermal conductivity of dry fly ashes with various carbon and biomass contents[J]. Waste Management, 2021, 135: 122-129. [27] 魏迎奇, 田继雪, 蔡 红, 等. 粉煤灰的基质吸力及非饱和特性研究[J]. 水利学报, 2014, 45(增刊2): 8-13. WEI Y Q, TIAN J X, CAI H, et al. Research on matrix suction and un-saturated characteristics of fly ash[J]. Journal of Hydraulic Engineering, 2014, 45(supplement 2): 8-13 (in Chinese). [28] 赵志方, 陈建平, 王卫仑. 不同掺量粉煤灰混凝土热膨胀系数的确定[J]. 长江科学院院报, 2018, 35(12): 143-147. ZHAO Z F, CHEN J P, WANG W L. Determination of thermal expansion coefficient of concrete dosed with different volumes of fly ash[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(12): 143-147 (in Chinese). [29] 张玉芝, 王 玺, 王 盟, 等. 冻融过程中冰水相变对非饱和粉土动力学性能的影响[J]. 岩石力学与工程学报, 2024, 43(7): 1799-1808. ZHANG Y Z, WANG X, WANG M, et al. Effect of ice-water phase change on the dynamic properties of unsaturated silt during freeze-thaw process[J]. Chinese Journal of Rock Mechanics and Engineering, 2024, 43(7): 1799-1808 (in Chinese). [30] 邓青松, 曾 超, 何先志, 等. 季冻区公路路基水热场阴阳坡差异与防冻胀模拟[J]. 中南大学学报(自然科学版), 2022, 53(8): 3113-3128. DENG Q S, ZENG C, HE X Z, et al. Simulation of hydrothermal field difference and anti-frost heaving of highway subgrade with sunny-shady slopes in seasonally frozen regions[J]. Journal of Central South University (Science and Technology), 2022, 53(8): 3113-3128 (in Chinese). |