欢迎访问《硅酸盐通报》官方网站,今天是

硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (11): 4037-4047.DOI: 10.16552/j.cnki.issn1001-1625.2025.0776

• 极端环境工程材料 • 上一篇    下一篇

自组装纳米纤维泡沫稳定机制及其对泡沫混凝土性能的影响

王昊天, 杜振兴, 张思远, 武瑞凯, 程方鸿   

  1. 青岛理工大学土木工程学院,青岛 266520
  • 收稿日期:2025-08-01 修订日期:2025-09-07 出版日期:2025-11-15 发布日期:2025-12-04
  • 通信作者: 杜振兴,博士,讲师。E-mail:duzhenxing@qut.edu.cn
  • 作者简介:王昊天(2000—),男,硕士研究生。主要从事泡沫保温材料方面的研究。E-mail:Herzurf1205@outlook.com
  • 基金资助:
    山东省自然科学基金(ZR2024QE441)

Foam Stabilization Mechanism of Self-Assembled Nanofiber and Its Effect on Foamed Concrete Performance

WANG Haotian, DU Zhenxing, ZHANG Siyuan, WU Ruikai, CHENG Fanghong   

  1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, China
  • Received:2025-08-01 Revised:2025-09-07 Published:2025-11-15 Online:2025-12-04

摘要: 泡沫混凝土的轻质化与功能化受限于泡沫稳定性不足导致的孔隙结构劣化。本研究创新性地利用椰油酰胺丙基甜菜碱(CAB)诱导硬脂酸钠(SS)在水溶液中自组装形成三维纳米纤维结构。通过泡沫稳定性测试、透射电子显微镜(TEM)和扫描电子显微镜(SEM)表征证实,该三维纳米纤维结构显著提升了液膜强度与体系黏弹性,在2.00%(质量分数)SS纳米纤维浓度下实现了120 h泡沫体积损失约2.10%、气泡直径细化至12.22 μm的超稳定泡沫。以此泡沫为模板,成功制备出密度低至60 kg/m3的超轻泡沫混凝土,其导热系数仅为0.056 W/(m·K),较密度为200 kg/m3的泡沫混凝土降低52.14%,且热成像显示出优异的隔热性能。压缩试验表明该泡沫混凝土材料呈现类聚合物泡沫的密实化行为,抗压强度随密度降低而减小(密度为60 kg/m3时为0.012 MPa),但纳米纤维网络通过抑制裂纹扩展优化了力学响应。耐火测试(1 000 ℃火焰灼烧2 min)证实泡沫混凝土试件表面形成烧结保护层,体积收缩约10%。本研究为兼具超轻、隔热与耐火特性的泡沫混凝土提供了可产业化的稳泡-功能一体化策略。

关键词: 纳米纤维, 超稳定泡沫, 泡沫混凝土, 力学性能, 隔热性能, 耐火性能

Abstract: Foamed concrete faces challenges in ultralight design and functionalization due to poor foam stability, which causes defective pore structures. This study innovatively utilized cocamidopropyl betaine (CAB) to induce self-assembled sodium stearate (SS) in aqueous solutions, forming a three-dimensional nanofiber network. Foam stability tests, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) characterization confirm that the three-dimensional nanofiber network significantly enhances liquid film strength and system viscoelasticity, achieves an ultra-stable foam with about 2.10% volume loss over 120 h and a reduced average bubble diameter of 12.22 μm at 2.00% (mass fraction) SS nanofiber concentration. Using this foam as a template, ultralight foamed concrete with a density of 60 kg/m3 is successfully prepared, exhibiting a low thermal conductivity of 0.056 W/(m·K)—a 52.14% reduction compared to conventional 200 kg/m3 foamed concrete—with a superior insulation property confirmed by thermal imaging. Compression tests reveal that the foamed concrete material exhibits a polymer-like foam densification behavior. The compressive strength decreases with the decrease of density (0.012 MPa at a density of 60 kg/m3). However, the nanofiber network enhances mechanical response by suppressing crack propagation. Fire resistance testing (1 000 ℃ flame burning for 2 min) demonstrates the formation of a sintered protective layer on the surface of the foamed concrete specimen, accompanied by ~10% volume shrinkage. This work proposes an industrially viable integrated strategy combining foam stabilization and multifunctionalization to develop foamed concrete with ultralight, thermal insulation, and fire resistance.

Key words: nanofiber, ultra-stable foam, foamed concrete, mechanical property, thermal insulation performance, fire resistance performance

中图分类号: