[1] 郑 娟, 李 辉, 徐名凤, 等. 海水对高贝利特硫铝酸盐水泥水化过程和力学性能的影响[J]. 硅酸盐通报, 2021, 40(9): 2898-2904+2920. ZHENG J, LI H, XU M F, et al. Effect of seawater on hydration process and mechanical properties of high belite calcium sulphoaluminate cement[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(9): 2898-2904+2920 (in Chinese). [2] KIM J, MCCARTER W J, SURYANTO B, et al. Chloride ingress into marine exposed concrete: a comparison of empirical- and physically-based models[J]. Cement and Concrete Composites, 2016, 72: 133-145. [3] 潘崇根, 张 奕, 崔晨光, 等. 海洋环境混凝土功能组分优化设计与性能研究[J]. 硅酸盐通报, 2017, 36(10): 3439-3445+3458. PAN C G, ZHANG Y, CUI C G, et al. Optimal design and performance of concrete with function component in marine environment[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(10): 3439-3445+3458 (in Chinese). [4] 陆春华, 朱学武, 平 安, 等. 含引气剂海工混凝土的抗冻性能及其梁受弯承载力[J]. 硅酸盐通报, 2024, 43(2): 418-427. LU C H, ZHU X W, PING A, et al. Frost resistance of marine concrete containing air-entraining agent and its beam bending capacity[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 418-427 (in Chinese). [5] LI K F, ZHANG D D, LI Q W, et al. Durability for concrete structures in marine environments of HZM project: design, assessment and beyond[J]. Cement and Concrete Research, 2019, 115: 545-558. [6] MOFFATT E G, THOMAS M D A, FAHIM A. Performance of high-volume fly ash concrete in marine environment[J]. Cement and Concrete Research, 2017, 102: 127-135. [7] YANG L, YAN Y, HU Z H, et al. Utilization of phosphate fertilizer industry waste for belite-ferroaluminate cement production[J]. Construction and Building Materials, 2013, 38: 8-13. [8] CHENG Z R, ZHAO J H, CUI L Y. Exploration of hydration and durability properties of ferroaluminate cement with compare to Portland cement[J]. Construction and Building Materials, 2022, 319: 126138. [9] 汪智勇, 吴升国, 齐冬有, 等. 铁相对铁铝酸盐水泥熟料形成的影响[J]. 硅酸盐通报, 2023, 42(5): 1561-1568. WANG Z Y, WU S G, QI D Y, et al. Effect of ferrite phase on formation of ferroaluminate cement clinker[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1561-1568 (in Chinese). [10] 李建强. 海洋各腐蚀区带混凝土中离子传输与反应研究[D]. 青岛: 青岛理工大学, 2016. LI J Q. Ions penetration and reaction in concrete exposed to different corrosion zones in marine environment[D]. Qingdao: Qingdao University of Technology, 2016 (in Chinese). [11] 李 隽, 高培伟, 刘宏伟, 等. 混凝土在浸泡和干湿循环作用下的抗氯盐侵蚀性能[J]. 南京理工大学学报, 2017, 41(5): 666-670. LI J, GAO P W, LIU H W, et al. Study on concrete resistance to chloride salt corrosion under full soaking and wet-dry cycling condition[J]. Journal of Nanjing University of Science and Technology, 2017, 41(5): 666-670 (in Chinese). [12] 徐彬彬, 欧忠文, 罗 伟, 等. 海水干湿循环下玄武岩纤维增强珊瑚混凝土耐久性[J]. 合成纤维, 2020, 49(3): 23-27. XU B B, OU Z W, LUO W, et al. Durability of basalt fiber reinforced coral concrete under seawater and drying-wetting cycles[J]. Synthetic Fiber in China, 2020, 49(3): 23-27 (in Chinese). [13] ZHANG B, ZHU H. Durability of seawater coral aggregate concrete under seawater immersion and dry-wet cycles[J]. Journal of Building Engineering, 2023, 66: 105894. [14] CHEN D P, ZOU J J, ZHAO L, et al. Degradation of dynamic elastic modulus of concrete under periodic temperature-humidity action[J]. Materials, 2020, 13(3): 611. [15] American Society for Testing and Materials. Standard practice for the preparation of substitute ocean water: ASTM D1141—98[S]. West Conshohocken, PA: American Society for Testing and Materials, 2013. [16] 王 倩. 海水侵蚀下钢筋再生混凝土梁的耐久性与寿命预测[D]. 南京: 南京航空航天大学, 2017. WANG Q. Durability and life prediction of reinforced recycled aggregate concrete beam exposed to seawater[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese). [17] 王燕谋, 苏慕珍, 路永华, 等. 中国特种水泥[M]. 北京: 中国建材工业出版社, 2012. WANG Y M, SU M Z, LU Y H, et al. Special cements in China[M]. Beijing: China Building Materials Press, 2012 (in Chinese). [18] 高润东, 赵顺波, 李庆斌, 等. 干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究[J]. 土木工程学报, 2010, 43(2): 48-54. GAO R D, ZHAO S B, LI Q B, et al. Experimental study of the deterioration mechanism of concrete under sulfate attack in wet-dry cycles[J]. China Civil Engineering Journal, 2010, 43(2): 48-54 (in Chinese). [19] 刘高鹏. 海水环境下纤维增强水泥基复合材料力学性能及弯曲韧性研究[D]. 武汉: 武汉科技大学, 2020. LIU G P. Study on mechanical properties and flexural toughness of fiber reinforced cementitious composites under seawater[D]. Wuhan: Wuhan University of Science and Technology, 2020 (in Chinese). [20] 朱 猛. 海洋环境下干湿循环和冻融循环对活性粉末混凝土力学性能的影响研究[D]. 北京: 北京交通大学, 2014. ZHU M. Influence of dry-wet and freeze-thaw cycles on mechanical properties of reactive powder concrete in marine environment[D]. Beijing: Beijing Jiaotong University, 2014 (in Chinese). [21] 李树忱, 张 峰, 祝金鹏. 海水侵蚀环境下混凝土力学性能劣化试验[J]. 公路交通科技, 2009, 26(12): 35-38. LI S C, ZHANG F, ZHU J P. Experiment of mechanical property deterioration of concrete in environment of seawater corrosion[J]. Journal of Highway and Transportation Research and Development, 2009, 26(12): 35-38 (in Chinese). [22] 姚昌建, 金伟良, 王海龙, 等. 海工混凝土氯离子扩散系数随深度的变化规律[J]. 水利水运工程学报, 2008(4): 14-18. YAO C J, JIN W L, WANG H L, et al. Change of chloride diffusion coefficient in marine concrete with depth[J]. Hydro-Science and Engineering, 2008(4): 14-18 (in Chinese). [23] QUERCIA G, SPIESZ P, HÜSKEN G, et al. SCC modification by use of amorphous nano-silica[J]. Cement and Concrete Composites, 2014, 45: 69-81. |