硅酸盐通报 ›› 2025, Vol. 44 ›› Issue (6): 2159-2171.DOI: 10.16552/j.cnki.issn1001-1625.2024.1243
韩中宇1, 刘芳1, 茆文姝2
收稿日期:2024-10-21
修订日期:2025-01-20
发布日期:2025-06-27
通信作者:
刘 芳,博士,副教授。E-mail:cherry1226@yeah.net
作者简介:韩中宇(2001—),男,硕士研究生。主要从事混凝土耐久性及固废资源化利用的研究。E-mail:hzy010127@163.com
HAN Zhongyu1, LIU Fang1, MAO Wenshu2
Received:2024-10-21
Revised:2025-01-20
Online:2025-06-27
摘要: 橡胶水泥基材料为废旧橡胶的利用提供了新的思路,可将废旧橡胶轮胎打磨成橡胶颗粒,掺入水泥基材料中,制备成橡胶水泥基材料。与普通水泥基材料相比,橡胶水泥基材料在韧性、抗冲击性和耐久性等方面均有不同程度的提高,已成为道路建筑材料研究的一个热点。本文综述了国内外近些年对橡胶水泥基材料耐久性研究的成果并进行了总结分析。结果表明,在水泥基材料中掺加橡胶可以不同程度地改善水泥基材料的抗渗性、抗冻性、抗碳化性及抗盐侵蚀性等方面的性能。通过对橡胶进行改性处理,可以改变其表面形态,提高橡胶与水泥界面的黏附力,从而提升橡胶水泥基材料的耐久性。本文旨在为国内外橡胶水泥基材料的深入研究提供参考和借鉴。
中图分类号:
韩中宇, 刘芳, 茆文姝. 橡胶水泥基材料耐久性研究进展[J]. 硅酸盐通报, 2025, 44(6): 2159-2171.
HAN Zhongyu, LIU Fang, MAO Wenshu. Research Progress on Durability of Rubber Cement-Based Materials[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2159-2171.
| [1] 中国物资再生协会. 2024中国再生资源回收行业发展报告[J]. 资源再生, 2024(7): 27-38. China National Resources Recycling Association. Development report of China’s renewable resources recycling industry in 2024[J]. Resource Recycling, 2024(7): 27-38 (in Chinese). [2] 刘绪林. 创新发展模式, 促进轮胎翻新行业高质量发展[J]. 中国轮胎资源综合利用, 2024(7): 21-26. LIU X L. Innovate the development model and promote the high-quality development of the tire retreading industry[J]. China Tire Resources Recycling, 2024(7): 21-26 (in Chinese). [3] 国家发展改革委, 科技部, 工业和信息化部, 等. 十部门联合印发《关于“十四五”大宗固体废弃物综合利用的指导意见》[J]. 资源再生, 2021(3): 50-53. National Development and Reform Commission, Ministy of Science and Techology of the People’s Republic of China, Ministry of Industry And Information Technology, et al. Ten departments jointly issued the“guiding opinions on the comprehensive utilization of bulk solid wastes in the 14th Five-Year Plan”[J]. Resource Recycling, 2021(3): 50-53 (in Chinese). [4] COVENTRY K, RICHARDSON A, ROGERS J. Latin American and European conference on sustainable buildings and communities: impact resistance of concrete-using slit rubber from tyres[C]. Guimarães: Elsevier, 2015: 347-354. [5] KUMAR A, LAMBA M. Improvement in impact resisting capacity of concrete using tyre rubber dust[J]. International Journal of Scientific Engineering and Technology, 2017, 6(7): 235. [6] GESOĞLU M, GÜNEYISI E, KHOSHNAW G, et al. Abrasion and freezing-thawing resistance of pervious concretes containing waste rubbers[J]. Construction and Building Materials, 2014, 73: 19-24. [7] MEDINA N F, MEDINA D F, HERNÁNDEZ-OLIVARES F, et al. Mechanical and thermal properties of concrete incorporating rubber and fibres from tyre recycling[J]. Construction and Building Materials, 2017, 144: 563-572. [8] GHIZDĂVEŢZ, BIANCA-MARIA Ş, NASTAC D, et al. Sound absorbing materials made by embedding crumb rubber waste in a concrete matrix[J]. Construction and Building Materials, 2016, 124: 755-763. [9] PENG L C, GE D D, LV S T, et al. Use of waste rubber particles in cement-stabilized aggregate for the eco-friendly pavement base layer construction: laboratory performance and field application[J]. Construction and Building Materials, 2023, 402: 133023. [10] YIN D H, JIN H, GU X Y, et al. Influence of rubber geometrical characteristics on the corrosion behavior of rebar in rubberized concrete[J]. Journal of Building Engineering, 2023, 77: 107535. [11] YOUSSF O, MILLS J E, ELLIS M, et al. Practical application of crumb rubber concrete in residential slabs[J]. Structures, 2022, 36: 837-853. [12] LIU X, LIU P Y, WANG Q C, et al. Feasibility analysis on application of modified concrete contains rubber powder of straddle type monorail train waste tire[J]. Procedia Environmental Sciences, 2016, 31: 804-811. [13] ZÁLESKÁ M, PAVLÍK Z, DAVID Č, et al. Eco-friendly concrete with scrap-tyre-rubber-based aggregate-Properties and thermal stability[J]. Construction and Building Materials, 2019, 225: 709-722. [14] 王家序, 冯 伟, 韩彦峰, 等. 丁腈橡胶紫外线臭氧照射亲水改性及其水润滑性能研究[J]. 摩擦学学报, 2019, 39(4): 463-469. WANG J X, FENG W, HAN Y F, et al. Hydrophilic modification and water lubrication performance of NBR rubber UV/ozone(UVO) treatment[J]. Tribology, 2019, 39(4): 463-469 (in Chinese). [15] ABD-ELAAL E S, ARABY S, MILLS J E, et al. Novel approach to improve crumb rubber concrete strength using thermal treatment[J]. Construction and Building Materials, 2019, 229: 116901. [16] ZHU Z R, LU Y Y, ZHOU M. Enhancing performance of rubber mortar and water pollutant capture via fast and facile modification of recycled waste rubber particles[J]. Construction and Building Materials, 2024, 411: 134295. [17] ZHU Z R, ZHOU M, WANG B, et al. Enhancing permeability and mechanical properties of rubber cement-based materials through surface modification of waste tire rubber powder[J]. Construction and Building Materials, 2024, 425: 136098. [18] ZHU Z R, LU Y Y, ZHOU M. Surface modification of recycled tire rubber powders with tannic acid and nano-TiO2 for enhanced performance and photocatalytic properties of rubberized cement-based materials[J]. Construction and Building Materials, 2023, 399: 132607. [19] DONG Q, HUANG B S, SHU X. Rubber modified concrete improved by chemically active coating and silane coupling agent[J]. Construction and Building Materials, 2013, 48: 116-123. [20] 李振霞, 陈渊召, 郭滕滕, 等. 改性橡胶碾压混凝土路用性能及作用机理[J]. 中国公路学报, 2023, 36(5): 38-48. LI Z X, CHEN Y Z, GUO T T, et al. Pavement performance and mechanism of action for modified rubber roller compacted concrete[J]. China Journal of Highway and Transport, 2023, 36(5): 38-48 (in Chinese). [21] 兰 锦, 张 宏, 姜晓东, 等. 偏高岭土改性NaOH预处理橡胶混凝土抗盐冻性能及寿命预测[J/OL]. 建筑材料学报, 2024: 1-13 (2024-06-06) [2024-10-11]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JZCX20240603006&dbname=CJFD&dbcode=CJFQ. LAN J, ZHANG H, JIANG X D, et al. Frost resistance and life prediction of rubber concrete pretreated with metakaolin modified NaOH[J/OL]. China Industrial Economics, 2024: 1-13 (2024-06-06) [2024-10-11]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JZCX20240603006&dbname=CJFD&dbcode=CJFQ (in Chinese). [22] 季 节, 王颢翔, 王 琴, 等. 改性废旧橡胶粉对水泥胶砂性能的影响[J]. 建筑材料学报, 2021, 24(4): 679-686. JI J, WANG H X, WANG Q, et al. Effect of modified rubber powder on performances of cement mortar[J]. Journal of Building Materials, 2021, 24(4): 679-686 (in Chinese). [23] LIN Q, LIU Z Q, SUN J L, et al. Comprehensive modification of emulsified asphalt on improving mechanical properties of crumb rubber concrete[J]. Construction and Building Materials, 2023, 369: 130555. [24] ASSAGGAF R, MASLEHUDDIN M, AL-OSTA M A, et al. Properties and sustainability of treated crumb rubber concrete[J]. Journal of Building Engineering, 2023, 51: 104250. [25] HE L, CAI H D, HUANG Y, et al. Research on the properties of rubber concrete containing surface-modified rubber powders[J]. Journal of Building Engineering, 2021, 35: 101991. [26] WANG J Q, SONG G W, LI Q, et al. The investigation on targeted micro-surface treatment methods for waste tires recycling in cementitious construction materials[J]. Journal of Cleaner Production, 2024, 466: 142877. [27] 龚亦凡, 陈 萍, 张京旭, 等. 废弃橡胶颗粒对再生骨料砂浆技术性能改良[J]. 硅酸盐学报, 2021, 49(10): 2305-2312. GONG Y F, CHEN P, ZHANG J X, et al. Improvement of engineering properties of recycled aggregate mortar by amending waste rubber particles[J]. Journal of the Chinese Ceramic Society, 2021, 49(10): 2305-2312 (in Chinese). [28] 许金余, 李赞成, 罗 鑫, 等. 橡胶粉对混凝土抗渗性影响的试验研究[J]. 硅酸盐通报, 2014, 33(2): 388-392. XU J Y, LI Z C, LUO X, et al. Experimental study on the effect of rubber powder on permeating-resisting properties of concrete[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(2): 388-392 (in Chinese). [29] ADESINA A, DAS S. Performance of engineered cementitious composites incorporating crumb rubber as aggregate[J]. Construction and Building Materials, 2021, 274(3): 122033. [30] RICHARDSON A E, COVENTRY K A, WARD G. Freeze/thaw protection of concrete with optimum rubber crumb content[J]. Journal of Cleaner Production, 2011, 23(1): 96-103. [31] HAN X Y, DING N, CHEN A J, et al. Experimental study on freeze-thaw failure of concrete incorporating waste tire crumb rubber and analytical evaluation of frost resistance[J]. Construction and Building Materials, 2024, 439: 137356. [32] HE Y Z, ZHANG J C, JIANG Z H, et al. Evaluation of the freeze-thaw resistance of concrete incorporating waste rubber and waste glass[J]. Composites Communications, 2024, 50: 102020. [33] 姚韦靖, 刘雨姗, 王婷雅, 等. 橡胶/混凝土盐冻循环后性能劣化及微观结构[J]. 复合材料学报, 2021, 38(12): 4294-4304. YAO W J, LIU Y S, WANG T Y, et al. Performance degradation and microscopic structure of rubber/concrete after salt freeze-thaw cycles[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4294-4304 (in Chinese). [34] GONEN T. Freezing-thawing and impact resistance of concretes containing waste crumb rubbers[J]. Construction and Building Materials, 2018, 177: 436-442. [35] LIU H B, LUO G B, GONG Y F, et al. Mechanical properties, permeability, and freeze-thaw resistance of pervious concrete modified by waste crumb rubbers[J]. Applied Sciences, 2018, 8(10): 184. [36] RICHARDSON A, COVENTRY K, EDMONDSON V, et al. Crumb rubber used in concrete to provide freeze-thaw protection (optimal particle size)[J]. Journal of Cleaner Production, 2016, 112: 599-606. [37] GRINYS A, AUGONIS A, DAUKYS M, et al. Mechanical properties and durability of rubberized and SBR latex modified rubberized concrete[J]. Construction and Building Materials, 2020, 248: 118584. [38] DOU Y M, FENG G Y, XU L F, et al. Modification of rubber particles and its application in rubberized concrete[J]. Journal of Building Engineering, 2022, 51: 104346. [39] LUHAR S, LUHAR I, NICOLAIDES D, et al. Durability performance evaluation of rubberized geopolymer concrete[J]. Sustainability, 2021, 13(11): 5969. [40] BRAVO M, DE BRITO J. Concrete made with used tyre aggregate: durability-related performance[J]. Journal of Cleaner Production, 2012, 25: 42-50. [41] YOUSSF O, ELCHALAKANI M, HASSANLI R, et al. Mechanical performance and durability of geopolymer lightweight rubber concrete[J]. Journal of Building Engineering, 2022, 45: 103608. [42] PHAM T M, ELCHALAKANI M, HAO H, et al. Durability characteristics of lightweight rubberized concrete[J]. Construction and Building Materials, 2019, 224: 584-599. [43] THOMAS B S, GUPTA R C. Long term behaviour of cement concrete containing discarded tire rubber[J]. Journal of Cleaner Production, 2015, 102: 78-87. [44] THOMAS B S, GUPTA R C, MEHRA P, et al. Performance of high strength rubberized concrete in aggressive environment[J]. Construction and Building Materials, 2015, 83: 320-326. [45] GHENI A A, ALGHAZALI H H, ELGAWADY M A, et al. Durability properties of cleaner cement mortar with by-products of tire recycling[J]. Journal of Cleaner Production, 2019, 213: 1135-1146. [46] GUPTA T, CHAUDHARY S, SHARMA R K. Assessment of mechanical and durability properties of concrete containing waste rubber tire as fine aggregate[J]. Construction and Building Materials, 2014, 73: 562-574. [47] 刘雨姗, 庞建勇. 硫酸盐侵蚀下混杂纤维/橡胶混凝土力学性能及微观结构[J]. 复合材料学报, 2024, 41(4): 2055-2064. LIU Y S, PANG J Y. Mechanical properties and microstructure of hybrid fiber reinforced rubber concrete under sulfate attack[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2055-2064 (in Chinese). [48] FLORES MEDINA D, CAROLINA HERNÁNDEZ MARTÍNEZ M, FLORES MEDINA N, et al. Durability of rubberized concrete with recycled steel fibers from tyre recycling in aggresive enviroments[J]. Construction and Building Materials, 2023, 400: 132619. [49] 傅 强, 牛荻涛, 谢友均, 等. 橡胶集料自密实混凝土的抗硫酸盐侵蚀性能[J]. 建筑材料学报, 2017, 20(3): 359-365. FU Q, NIU D T, XIE Y J, et al. Sulfate erosion resistance of rubberized self-compacting concrete[J]. Journal of Building Materials, 2017, 20(3): 359-365 (in Chinese). [50] GUPTA T, SIDDIQUE S, SHARMA R K, et al. Behaviour of waste rubber powder and hybrid rubber concrete in aggressive environment[J]. Construction and Building Materials, 2019, 217: 283-291. [51] YUNG W H, YUNG L C, HUA L H. A study of the durability properties of waste tire rubber applied to self-compacting concrete[J]. Construction and Building Materials, 2013, 41: 665-672. [52] YASSER N, ABDELRAHMAN A, KOHAIL M, et al. Experimental investigation of durability properties of rubberized concrete[J]. Ain Shams Engineering Journal, 2023, 14(6): 102111. [53] ONUAGULUCHI O, BANTHIA N. Long-term sulfate resistance of cementitious composites containing fine crumb rubber[J]. Cement and Concrete Composites, 2019, 104: 103354. [54] MALLEK J, OMIKRINE-METALSSI O, LOULIZI A, et al. Durability of self-compacting rubberized concrete exposed to external sulphate attack[J]. Case Studies in Construction Materials, 2024, 20: e02730. [55] BISHT K, RAMANA P V. Waste to resource conversion of crumb rubber for production of sulphuric acid resistant concrete[J]. Construction and Building Materials, 2019, 194: 276-286. [56] LI Y, YANG X B, LOU P, et al. Sulfate attack resistance of recycled aggregate concrete with NaOH-solution-treated crumb rubber[J]. Construction and Building Materials, 2021, 287: 123044. [57] 朱思远, 耿 欧, 王 腾, 等. 废轮胎再生混凝土抗氯离子侵蚀试验研究[J]. 混凝土, 2021(2): 53-58. ZHU S Y, GENG O, WANG T, et al. Experimental study on chloride ion corrosion resistance of waste tire recycled concrete[J]. Concrete, 2021(2): 53-58 (in Chinese). [58] THOMAS B S, GUPTA R C, PANICKER V J. Recycling of waste tire rubber as aggregate in concrete: durability-related performance[J]. Journal of Cleaner Production, 2016, 112: 504-513. [59] HAN Q H, WANG N, ZHANG J R, et al. Experimental and computational study on chloride ion transport and corrosion inhibition mechanism of rubber concrete[J]. Construction and Building Materials, 2021, 268: 121105. [60] HAN Q H, YANG Y Z, ZHANG J R, et al. Experimental investigation and numerical simulation of chloride diffusion in rubber concrete under dry-wet cycles[J]. Journal of Building Engineering, 2024, 96: 110558. [61] ZHU H, LIANG J, XU J, et al. Research on anti-chloride ion penetration property of crumb rubber concrete at different ambient temperatures[J]. Construction and Building Materials, 2018, 189: 42-53. [62] MOHSENI E, KOUSHKBAGHI M. Recycling of landfill waste tyre in construction materials: durability of concrete made with chipped rubber[J]. Construction and Building Materials, 2023, 409: 134114. [63] 王 鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(增刊1): 211-214. WANG P. Research on performance improvement of airport pavement concrete[J]. Materials Reports, 2022, 36(supplement 1): 211-214 (in Chinese). |
| [1] | 梁云, 喻秋淳, 邓永杰, 董思伽, 李维红, 李栋伟. 喷射打印超速凝磷酸镁水泥涂层的粘结强度与耐久性[J]. 硅酸盐通报, 2025, 44(6): 1967-1978. |
| [2] | 范嘉慧, 张艺珂, 元成方. 黄河砂高延性水泥基复合材料的冻融损伤特性与模型研究[J]. 硅酸盐通报, 2025, 44(6): 2060-2069. |
| [3] | 田沛丰, 温勇, 郭晓琦, 林海孟. 用于腐蚀保护的NO-2-LDHs自愈微胶囊的制备及性能研究[J]. 硅酸盐通报, 2025, 44(5): 1622-1633. |
| [4] | 查文华, 蔡雨凯, 许涛, 钱育冬. 外加剂掺量对煤矸石喷射混凝土力学性能和抗渗性的影响[J]. 硅酸盐通报, 2025, 44(5): 1676-1688. |
| [5] | 王立成, 邹凯. 水浸-室内环境下开裂微生物砂浆的长期修复能力试验研究[J]. 硅酸盐通报, 2025, 44(3): 842-851. |
| [6] | 朱贵旺, 秦磊, 丁蔚健, 李坪峰, 孙明. 基于声发射参数的超材料对水泥基材料弯曲韧性影响研究[J]. 硅酸盐通报, 2025, 44(2): 424-433. |
| [7] | 罗国仪, 徐桂弘, 任旭, 邓文波, 陈孜伟, 刘次啟. 磷石膏对玄武岩纤维混凝土碳化及抗渗性能的影响[J]. 硅酸盐通报, 2025, 44(1): 231-242. |
| [8] | 段劲松, 崔勇, 付勇攀, 宋奇达, 于晓, 王涛, 凌研方, 房奎圳. 含MgO膨胀剂的水泥砂浆在恒温和变温养护制度下的限制膨胀率[J]. 硅酸盐通报, 2024, 43(9): 3149-3156. |
| [9] | 李晓帆, 张爽, 周仲煜, 周知, 黄维. 钢筋混凝土水池壁板水平施工缝抗渗性能试验研究[J]. 硅酸盐通报, 2024, 43(9): 3224-3234. |
| [10] | 刘亚炜, 胡阳, 罗琦, 鲁刘磊, 裴大田, 李斌斌, 马俊, 汪峻峰. 低温环境下硅灰对掺无碱速凝剂水泥砂浆抗压强度和抗渗性的影响[J]. 硅酸盐通报, 2024, 43(9): 3273-3281. |
| [11] | 李雪峰. 低温环境下含石灰石粉水泥基材料抗硫酸盐侵蚀性能研究[J]. 硅酸盐通报, 2024, 43(7): 2372-2382. |
| [12] | 李剑峰. 含SAP水泥基材料动态力学性能演变规律研究[J]. 硅酸盐通报, 2024, 43(6): 2022-2030. |
| [13] | 许成祥, 张家琪. 钢-PVA混杂纤维高性能混凝土抗渗性能试验研究[J]. 硅酸盐通报, 2024, 43(6): 2130-2136. |
| [14] | 吴春群, 韩康, 栗登辉, 杨华山. 凹凸棒土对3D打印水泥基材料工作性能及抗压强度的影响[J]. 硅酸盐通报, 2024, 43(5): 1683-1693. |
| [15] | 罗澍, 李之建, 王里. 多筋增强3D打印混凝土力学性能研究[J]. 硅酸盐通报, 2024, 43(5): 1694-1703. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||