BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2026, Vol. 45 ›› Issue (1): 133-144.DOI: 10.16552/j.cnki.issn1001-1625.2025.0716
• Cement and Concrete • Previous Articles Next Articles
LEI Jinsheng1,2(
), TAN Jiawei1,2, SHI Xiaoyu2, LEI Junjie2, LIU Jinxin2
Received:2025-07-22
Revised:2025-09-05
Online:2026-01-20
Published:2026-02-10
CLC Number:
LEI Jinsheng, TAN Jiawei, SHI Xiaoyu, LEI Junjie, LIU Jinxin. Experimental Study on Nutrient Slow-Release Performance of Nutrient Aggregate Ecological Concrete[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 133-144.
| Material | Fineness/% | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
|---|---|---|---|---|---|---|---|
| Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
| SAC | 2.4 | 15 | 30 | 5.7 | 7.5 | 38.4 | 46.2 |
Table 1 Physical properties of sulfoaluminate cement
| Material | Fineness/% | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
|---|---|---|---|---|---|---|---|
| Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
| SAC | 2.4 | 15 | 30 | 5.7 | 7.5 | 38.4 | 46.2 |
| Chemical composition | SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | K2O | Na2O | LOI |
|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 48.37 | 32.35 | 4.16 | 6.12 | 1.98 | 1.91 | 2.42 | 2.69 |
Table 2 Chemical composition of fly ash
| Chemical composition | SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | K2O | Na2O | LOI |
|---|---|---|---|---|---|---|---|---|
| Mass fraction/% | 48.37 | 32.35 | 4.16 | 6.12 | 1.98 | 1.91 | 2.42 | 2.69 |
| Material | Fineness/% | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
|---|---|---|---|---|---|---|---|
| Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
| OPC | 2.1 | 132 | 180 | 5.2 | 8.8 | 29.2 | 54.4 |
Table 3 Physical properties of ordinary Portland cement
| Material | Fineness/% | Setting time/min | Flexural strength/MPa | Compressive strength/MPa | |||
|---|---|---|---|---|---|---|---|
| Initial | Final | 3 d | 28 d | 3 d | 28 d | ||
| OPC | 2.1 | 132 | 180 | 5.2 | 8.8 | 29.2 | 54.4 |
| Material | Particle size/mm | Porosity/% | Apparent density/( kg·m-3) | Stacking density/( kg·m-3) | Water absorption/% |
|---|---|---|---|---|---|
| Crushed stone | 5~20 | 41.3 | 2 700 | 1 612 | 2.1 |
| 10~20 | 40.9 | 2 657 | 1 570 | 2.1 |
Table 4 Basic performance indicators of coarse aggregates
| Material | Particle size/mm | Porosity/% | Apparent density/( kg·m-3) | Stacking density/( kg·m-3) | Water absorption/% |
|---|---|---|---|---|---|
| Crushed stone | 5~20 | 41.3 | 2 700 | 1 612 | 2.1 |
| 10~20 | 40.9 | 2 657 | 1 570 | 2.1 |
| Group | Mass fraction/% | ||||||
|---|---|---|---|---|---|---|---|
| AS | OPM | POM | OSRF | CRF | SSP | FeSO4 | |
| a | 60 | 25 | 5 | 3 | 3 | 2 | 2 |
| b | 55 | 25 | 10 | 3 | 3 | 2 | 2 |
Table 5 Mix proportion of nutrient substrate
| Group | Mass fraction/% | ||||||
|---|---|---|---|---|---|---|---|
| AS | OPM | POM | OSRF | CRF | SSP | FeSO4 | |
| a | 60 | 25 | 5 | 3 | 3 | 2 | 2 |
| b | 55 | 25 | 10 | 3 | 3 | 2 | 2 |
| Sample | Mix proportion/(kg·m-3) | ||||||
|---|---|---|---|---|---|---|---|
| Cementing material(SAC) | Cementing material(FA) | Nutrient substrate(a) | Nutrient substrate (b) | Binder(SS) | Binder(PVAc) | Water | |
| N1 | 15 | 30 | 55 | — | 0.5 | — | 36 |
| N2 | 15 | — | — | 85 | — | 10.0 | 50 |
Table 6 Mix proportion of nutrient aggregates
| Sample | Mix proportion/(kg·m-3) | ||||||
|---|---|---|---|---|---|---|---|
| Cementing material(SAC) | Cementing material(FA) | Nutrient substrate(a) | Nutrient substrate (b) | Binder(SS) | Binder(PVAc) | Water | |
| N1 | 15 | 30 | 55 | — | 0.5 | — | 36 |
| N2 | 15 | — | — | 85 | — | 10.0 | 50 |
| Sample | Porosity/% | Mix proportion/(kg·m-3) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Nutrient aggregate | Aggregate | Sand | Cement | FA | Fortifier | Water | Water reducer | ||
| A1-0 | 25 | 0 | 1 538.0 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A1-10 | 25 | 104.0 | 1 384.2 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A1-20 | 25 | 208.0 | 1 230.4 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-0 | 25 | 0 | 1 538.0 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-10 | 25 | 65.0 | 1 384.2 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-20 | 25 | 130.0 | 1 230.4 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A3-0 | 20 | 0 | 1 579.0 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
| A3-10 | 20 | 65.0 | 1 380.1 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
| A3-20 | 20 | 130.0 | 1 222.2 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
Table 7 Mix proportion of ecological concrete
| Sample | Porosity/% | Mix proportion/(kg·m-3) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Nutrient aggregate | Aggregate | Sand | Cement | FA | Fortifier | Water | Water reducer | ||
| A1-0 | 25 | 0 | 1 538.0 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A1-10 | 25 | 104.0 | 1 384.2 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A1-20 | 25 | 208.0 | 1 230.4 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-0 | 25 | 0 | 1 538.0 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-10 | 25 | 65.0 | 1 384.2 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A2-20 | 25 | 130.0 | 1 230.4 | 0 | 220.0 | 26.0 | 13.0 | 72.5 | 1.3 |
| A3-0 | 20 | 0 | 1 579.0 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
| A3-10 | 20 | 65.0 | 1 380.1 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
| A3-20 | 20 | 130.0 | 1 222.2 | 175.4 | 200.5 | 23.6 | 11.8 | 75.5 | 1.2 |
| Sample | Particle size/mm | 7 d compressive strength/MPa | 28 d compressive strength/MPa | Bulk density/ (kg·m-3) | Water absorption/% | pH value |
|---|---|---|---|---|---|---|
| N1 | 10~15 | 0.48 | 0.65 | 1 040 | 41.7 | 9.6 |
| N2 | 10~15 | 0.31 | 0.48 | 650 | 42.0 | 8.6 |
Table 8 Basic properties of nutrient aggregates
| Sample | Particle size/mm | 7 d compressive strength/MPa | 28 d compressive strength/MPa | Bulk density/ (kg·m-3) | Water absorption/% | pH value |
|---|---|---|---|---|---|---|
| N1 | 10~15 | 0.48 | 0.65 | 1 040 | 41.7 | 9.6 |
| N2 | 10~15 | 0.31 | 0.48 | 650 | 42.0 | 8.6 |
| [1] | 乔建刚, 董进国, 李明浩, 等. 生态混凝土植生与抗冲刷性能研究[J]. 硅酸盐通报, 2023, 42(3): 917-924. |
| QIAO J G, DONG J G, LI M H, et al. Study on planting performance and scouring resistance of eco-concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 917-924 (in Chinese). | |
| [2] | 金珊珊, 李傲东, 张 扬. 低碱再生骨料植生混凝土吸返水特性表征模型研究[J]. 硅酸盐通报, 2023, 42(5): 1814-1821. |
| JIN S S, LI A D, ZHANG Y. Characterization model of water absorption and reversion characteristic of low alkali recycled aggregate planting concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(5): 1814-1821 (in Chinese). | |
| [3] |
NIYOMUKIZA J B, EISAZADEH A, TANGTERMSIRIKUL S. Synergistic effect of calcined clay and fly ash on the performance of porous vegetation concrete[J]. Construction and Building Materials, 2025, 458: 139749.
DOI URL |
| [4] | ZHENG C W, ZHANG Z H, HUANG Z Y, et al. Review of porous vegetation eco-concrete (PVEC) technology: from engineering requirements to material design[J]. Composites Part B: Engineering, 2024, 279: 111442. |
| [5] | 张 瑞, 杨大伟, 吴 科, 等. CO2养护压力对植生混凝土碱度及力学性能的影响[J]. 硅酸盐通报, 2023, 42(10): 3499-3507. |
| ZHANG R, YANG D W, WU K, et al. Effect of CO2 curing pressure on alkalinity and mechanical properties of vegetated concrete[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(10): 3499-3507 (in Chinese). | |
| [6] | 刘 平, 许艳平, 刘 飞, 等. 基于正交试验方法的植生混凝土性能研究[J]. 硅酸盐通报, 2024, 43(12): 4398-4405. |
| LIU P, XU Y P, LIU F, et al. Performance of vegetation-type concrete based on orthogonal experimental method[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(12): 4398-4405 (in Chinese). | |
| [7] |
MOHANTY S, SAHOO K, SAMAL K. Progress in sustainable vegetation eco-concrete technology: a review on materials, applications and challenges[J]. Journal of Building Engineering, 2025, 104: 112354.
DOI URL |
| [8] | YANG Y, LEI J S, WANG Q F, et al. Mechanical and vegetative performance of ecological concrete with nutrient aggregates[J]. Case Studies in Construction Materials, 2024, 20: e03210. |
| [9] | 陈 垚, 王重卿, 江世雄, 等. 基于再生骨料的多孔生态混凝土边坡防护及应用研究进展[J]. 水利水电技术(中英文), 2025, 56(增刊1): 768-775. |
| CHEN Y, WANG Z Q, JIANG S X, et al. Research review of slope protection and application of porous ecological concrete based on recycled aggregate[J]. Water Resources and Hydropower Engineering, 2025, 56(supplement 1): 768-775 (in Chinese). | |
| [10] |
LEI J G, SHI J M, GONG C C, et al. Study on green restoration of exposed mountain: effect of isobutylidene diurea on slow-release of total nitrogen and physiological characteristics of euonymus fortune in planted eco-concrete[J]. Construction and Building Materials, 2022, 359: 129460.
DOI URL |
| [11] |
TANG W, MOHSENI E, WANG Z Y. Development of vegetation concrete technology for slope protection and greening[J]. Construction and Building Materials, 2018, 179: 605-613.
DOI URL |
| [12] |
LI L B, CHEN M X, ZHOU X M, et al. Evaluation of the preparation and fertilizer release performance of planting concrete made with recycled-concrete aggregates from demolition[J]. Journal of Cleaner Production, 2018, 200: 54-64.
DOI URL |
| [13] | LI W C, ZHANG Q Y, LI L B, et al. Investigation on water and fertilizer retention properties of hydrated sulphoaluminate cement pastes modified by bentonite for porous ecological concrete[J]. Case Studies in Construction Materials, 2023, 18: e01967. |
| [14] |
WU C L, LIU C H, CHENG G Y, et al. Preparation of a low-carbon plant-compatible ecological concrete with fertilizer self-release characteristics based on multi-solid waste co-recycling and its environmental impact[J]. Journal of Building Engineering, 2023, 76: 107268.
DOI URL |
| [15] |
JIANG C B, LI J K, HU Y H, et al. Construction of water-soil-plant system for rainfall vertical connection in the concept of sponge city: a review[J]. Journal of Hydrology, 2022, 605: 127327.
DOI URL |
| [16] | 刘 军, 李振林, 张伟卓, 等. 工业固体废弃物材料制作冷粘结人造轻骨料的研究进展[J]. 材料导报, 2023, 37(18): 131-148. |
| LIU J, LI Z L, ZHANG W Z, et al. Research advances in cold-bonded artificial lightweight aggregates made from industrial solid waste materials[J]. Materials Reports, 2023, 37(18): 131-148 (in Chinese). | |
| [17] |
REN P F, LING T C, MO K H. Recent advances in artificial aggregate production[J]. Journal of Cleaner Production, 2021, 291: 125215.
DOI URL |
| [18] |
LEI J S, YANG Y, CHEN X H. Mechanics and permeability properties of ecological concrete mixed with recycled engineering muck particles[J]. Journal of Building Engineering, 2024, 91: 109560.
DOI URL |
| [19] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 建筑用卵石、碎石: GB/T 14685—2022[S]. 北京: 中国标准出版社, 2022. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Pebble and crushed stone for construction: GB/T 14685—2022[S]. Beijing: Standards Press of China, 2022 (in Chinese). | |
| [20] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 缓释肥料: GB/T 23348—2009[S]. 北京: 中国标准出版社, 2009. |
| General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Slow release fertilizer: GB/T 23348—2009[S]. Beijing: Standards Press of China, 2009 (in Chinese). | |
| [21] |
ZHU Y G, FU H, WANG P G, et al. Pore structure characteristics, mechanical properties, and freeze-thaw resistance of vegetation-pervious concrete with unsintered sludge pellets[J]. Construction and Building Materials, 2023, 382: 131342.
DOI URL |
| [22] |
ADRESI M, YAMANI A, KARIMAEI TABARESTANI M, et al. A comprehensive review on pervious concrete[J]. Construction and Building Materials, 2023, 407: 133308.
DOI URL |
| [23] |
ZHONG R, LENG Z, POON C S. Research and application of pervious concrete as a sustainable pavement material: a state-of-the-art and state-of-the-practice review[J]. Construction and Building Materials, 2018, 183: 544-553.
DOI URL |
| [24] | 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019. |
| Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019 (in Chinese). | |
| [25] |
XIANG Y, LI C Y, HAO H B, et al. Performances of biodegradable polymer composites with functions of nutrient slow-release and water retention in simulating heavy metal contaminated soil: biodegradability and nutrient release characteristics[J]. Journal of Cleaner Production, 2021, 294: 126278.
DOI URL |
| [26] |
QIAO D L, LIU H S, YU L, et al. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer[J]. Carbohydrate Polymers, 2016, 147: 146-154.
DOI PMID |
| [27] | PHANG S W, SIN L T, BEE S T, et al. Release kinetic model of nitrogen released encapsulated in starch-alginate controlled released urea: diffusion and its decay release[C]// 13th International Engineering Research Conference (13th Eureca 2019), Selangor Darul Ehsan, Malaysia. AIP Publishing, 2020: 040006. |
| [28] |
NIU R J, HU J J, LIU J Y, et al. Controlled release fertilizer eco-concrete: utilization of solid waste for the sustainable cleaner products conducive to ecological construction[J]. Construction and Building Materials, 2025, 463: 140017.
DOI URL |
| [29] |
CLAUDINO G O, RODRIGUES G G O, ROHDEN A B, et al. Mix design for pervious concrete based on the optimization of cement paste and granular skeleton to balance mechanical strength and permeability[J]. Construction and Building Materials, 2022, 347: 128620.
DOI URL |
| [1] | LI Shunkai, DOU Huakang, SUN Fengpin, CHEN Ronghui, LI Jie. Influence of Formwork Surface Roughness on Appearance Quality of Concrete Products [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 123-132. |
| [2] | ZHAO Yu, WANG Zhe, ZHU Lingli. Effect of Fiber on Rheological and Mechanical Properties of 3DP-UHPC [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2823-2838. |
| [3] | LIAO Xu, WANG Tao, JIANG Chuanfu, HE Yan, CUI Xuemin. Synthesis of Organic Soil by Geopolymer Solid Waste and Surgarcane Waste Residue Synergistic Dealkalization Red Mud [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2900-2911. |
| [4] | YE Wenkang, QI Zheng, YE Yanli, HE Zijun, MEI Shuxia, XIE Junlin. Discrete Element Simulation of Random Packing of Flake Particles in Boron Nitride Ceramic Green Body [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2965-2976. |
| [5] | CHAI Qian, CHEN Liulin, ZHANG Tiantian, CHENG Fengmei, WANG Yongxin, XIAO Wenxuan, ZHANG Hui, HE Panyang. Effect of Heating Regime on Performance of Iron Tailings-Based Ceramsite [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2996-3004. |
| [6] | HUANG Sheng, SUN Jiangtao, LI Zhitang, ZHU Zilong, SHEN Weiguo, SUN Zhijun, TAN Zonglin, WANG Guiming. Mesoscopic Simulation Study on Uniaxial Compression of Distributing-Filling Coarse Aggregate Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2437-2446. |
| [7] | ZHANG Xiangfei, LOU Guanghui, ZHANG Mengzhen, YIN Rui, LI Jing, ZHANG Wanyu, ZHANG Yisheng. Preparation of Gangue-Based Foamed Ceramics Using MnO2 as Blowing Agent and Na2B4O7 as Flux [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2280-2288. |
| [8] | WANG Jingyi, YANG Yifan, DUAN Guolin. Green Preparation and Performance Optimization of SiC Porous Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1869-1877. |
| [9] | QIAO Changtong, YU Chao, DENG Chengji, WANG Xuan, DING Jun, LIU Zhenglong, ZHU Hongxi. Effect of Aluminum Dross on Microstructure and Properties of Low Carbon Al2O3-C Refractory Materials [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1878-1887. |
| [10] | HE Jing, LYU Wei, WU Chiqiu, YU Zhengkang, LI Yisheng, SHUI Zhonghe. Interface Characteristics and Regulation of Core-Shell Structure Phosphogypsum-Based Aggregate/Portland Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(2): 613-622. |
| [11] | WANG Hailong, HOU Jianhua, SUN Xiaoyan, LIN Xiqiang, LU Lan. Anisotropy and Cause Analysis of Carbonation Resistance of 3D Printed Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1704-1712. |
| [12] | HUANG Dajian, WANG Zhiwu, TANG Wenjie, ZHANG Quanchao, QIANG Xiaohu. Effect of Curing Environment on Properties and Microstructure of Metakaolin Based Geopolymers [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1463-1471. |
| [13] | XU Cundong, LI Bofei, LI Zhun, WANG Hairuo, CAO Jun, XU Hui. Durability Deterioration Law of Basalt Fiber Concrete under Early Salt-Freezing Coupling Effect [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 816-824. |
| [14] | GUO Zirong, YANG Dingyi, CAO Zhonglu, JIA Xiangfeng, ZHAO Jian, CHEN Longxiang, MAO Xiang. High Temperature Performance of Blended Fiber Cement Mortar [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 851-865. |
| [15] | LIU Ping, XU Yanping, LIU Fei, PAN Jian, FAN Zhihong. Performance of Vegetation-Type Concrete Based on Orthogonal Experimental Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(12): 4398-4405. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||