BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2026, Vol. 45 ›› Issue (1): 336-345.DOI: 10.16552/j.cnki.issn1001-1625.2025.0758
• Road Materials • Previous Articles Next Articles
YUE Pengfei1(
), GUO Sibiao1, DING Xiujuan1, WANG Yusong1, WANG Dazhou1, HU Yue1, ZHANG Rongrong2(
), ZHANG Gang2, DING Jinmeng2
Received:2025-07-30
Revised:2025-09-03
Online:2026-01-20
Published:2026-02-10
CLC Number:
YUE Pengfei, GUO Sibiao, DING Xiujuan, WANG Yusong, WANG Dazhou, HU Yue, ZHANG Rongrong, ZHANG Gang, DING Jinmeng. Strength and Microscopic Mechanism of Fly Ash-Slag-Red Mud-Based Cementitious Materials Solidified Soil[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 336-345.
| Parameter | Value |
|---|---|
| Natural water content/% | 26.2 |
| Specific gravity of soil particle | 2.7 |
| Maximum dry density/(g·cm-3) | 1.7 |
| Liquid limit/% | 42.5 |
| Plastic limit/% | 19.3 |
| Plasticity index | 23.2 |
| Optimum moisture content/% | 18.0 |
Table 1 Physical performance index of undisturbed soil
| Parameter | Value |
|---|---|
| Natural water content/% | 26.2 |
| Specific gravity of soil particle | 2.7 |
| Maximum dry density/(g·cm-3) | 1.7 |
| Liquid limit/% | 42.5 |
| Plastic limit/% | 19.3 |
| Plasticity index | 23.2 |
| Optimum moisture content/% | 18.0 |
| Matreial | Mass fraction/% | |||
|---|---|---|---|---|
| CaO | SiO2 | SO3 | Al2O3 | |
| Fly ash | 5.6 | 45.1 | 2.1 | 24.2 |
| Slag | 39.3 | 33.1 | 1.9 | 15.0 |
| Red mud | 1.7 | 15.1 | 0.2 | 26.8 |
Table 2 Main chemical composition of fly ash, slag and red mud
| Matreial | Mass fraction/% | |||
|---|---|---|---|---|
| CaO | SiO2 | SO3 | Al2O3 | |
| Fly ash | 5.6 | 45.1 | 2.1 | 24.2 |
| Slag | 39.3 | 33.1 | 1.9 | 15.0 |
| Red mud | 1.7 | 15.1 | 0.2 | 26.8 |
| Specimen No. | Mass fraction/% | NaOH content/% | ||
|---|---|---|---|---|
| Fly ash | Slag | Red mud | ||
| 15FA-55SL-30RM | 15 | 55 | 30 | 0,4,8 |
| 15FA-60SL-25RM | 15 | 60 | 25 | 0,4,8 |
| 20FA-50SL-30RM | 20 | 50 | 30 | 0,4,8 |
| 20FA-55SL-25RM | 20 | 55 | 25 | 0,4,8 |
| 20FA-60SL-20RM | 20 | 60 | 20 | 0,4,8 |
| 25FA-45SL-30RM | 25 | 45 | 30 | 0,4,8 |
| 25FA-50SL-25RM | 25 | 50 | 25 | 0,4,8 |
| 25FA-55SL-20RM | 25 | 55 | 20 | 0,4,8 |
| 25FA-60SL-15RM | 25 | 60 | 15 | 0,4,8 |
| 30FA-45SL-25RM | 30 | 45 | 25 | 0,4,8 |
| 30FA-50SL-20RM | 30 | 50 | 20 | 0,4,8 |
| 30FA-55SL-15RM | 30 | 55 | 15 | 0,4,8 |
| 30FA-60SL-10RM | 30 | 60 | 10 | 0,4,8 |
Table 3 Mix proportion of solidified soil specimen
| Specimen No. | Mass fraction/% | NaOH content/% | ||
|---|---|---|---|---|
| Fly ash | Slag | Red mud | ||
| 15FA-55SL-30RM | 15 | 55 | 30 | 0,4,8 |
| 15FA-60SL-25RM | 15 | 60 | 25 | 0,4,8 |
| 20FA-50SL-30RM | 20 | 50 | 30 | 0,4,8 |
| 20FA-55SL-25RM | 20 | 55 | 25 | 0,4,8 |
| 20FA-60SL-20RM | 20 | 60 | 20 | 0,4,8 |
| 25FA-45SL-30RM | 25 | 45 | 30 | 0,4,8 |
| 25FA-50SL-25RM | 25 | 50 | 25 | 0,4,8 |
| 25FA-55SL-20RM | 25 | 55 | 20 | 0,4,8 |
| 25FA-60SL-15RM | 25 | 60 | 15 | 0,4,8 |
| 30FA-45SL-25RM | 30 | 45 | 25 | 0,4,8 |
| 30FA-50SL-20RM | 30 | 50 | 20 | 0,4,8 |
| 30FA-55SL-15RM | 30 | 55 | 15 | 0,4,8 |
| 30FA-60SL-10RM | 30 | 60 | 10 | 0,4,8 |
| [1] | 蔡光华, 李 纪, 王俊阁, 等. 剑麻纤维改良MgO-GGBS碳化粉质黏土物理力学性质与微观机制[J]. 林业工程学报, 2024, 9(5): 161-168. |
| CAI G H, LI J, WANG J G, et al. Physical and mechanical properties and microscopic mechanisms of MgO-GGBS carbonated silty clay improved by sisal fiber[J]. Journal of Forestry Engineering, 2024, 9(5): 161-168 (in Chinese). | |
| [2] | 张伟丽, 李明依, 李 俊, 等. 基于MICP技术的固化黏土抗侵蚀性能研究[J]. 安全与环境工程, 2025, 32(1): 201-210+232. |
| ZHANG W L, LI M Y, LI J, et al. Study on anti-erosion performance of clay reinforced by MICP technology[J]. Safety and Environmental Engineering, 2025, 32(1): 201-210+232 (in Chinese). | |
| [3] | 姜 鹏, 刘 林, 邹 仁, 等. 基于再生胶凝固化剂的季冻区路基固化土工程性能研究[J]. 铁道科学与工程学报, 2025, 22(2): 636-648. |
| JIANG P, LIU L, ZOU R, et al. Study on the performance of subgrade stabilized soil in seasonal freezing area based on reutilization cementitious curing agent[J]. Journal of Railway Science and Engineering, 2025, 22(2): 636-648 (in Chinese). | |
| [4] | 曾铭乐, 王志祥. 固废基道路地聚物注浆材料的组分优化及机理研究[J]. 硅酸盐通报, 2023, 42(8): 3033-3044. |
| ZENG M L, WANG Z X. Composition optimization and mechanism study of solid waste based road geopolymer grouting materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(8): 3033-3044 (in Chinese). | |
| [5] | 司马笑情, 谢祥兵, 李广慧, 等. 多源固废制备掺合料的活性评价及水泥水化产物微观性能[J]. 硅酸盐通报, 2025, 44(3): 1069-1079. |
| SIMA X Q, XIE X B, LI G H, et al. Activity evaluation of multi-source solid waste preparation admixtures and microscopic properties of cement hydration products[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(3): 1069-1079 (in Chinese). | |
| [6] | 王利军, 郭育霞. 电石渣和硅灰协同提升β半水磷石膏充填胶凝材料性能研究[J]. 矿业研究与开发, 2025, 45(5): 49-56. |
| WANG L J, GUO Y X. Carbide slag and silica fume synergistically improving the performance of β-hemihydrate phosphogypsum backfill cementing material[J]. Mining Research and Development, 2025, 45(5): 49-56 (in Chinese). | |
| [7] |
刘彦浩, 刘路路, 刘 涛, 等. 硅灰-矿渣-电石渣协同固化黄泛区粉土力学性能与微观机理研究[J]. 硅酸盐通报, 2025, 44(4): 1513-1524.
DOI |
| LIU Y H, LIU L L, LIU T, et al. Mechanical properties and microscopic mechanisms of yellow floodplain silt solidified by silica fume-ground granulated blast furnace slag-carbide slag synergy[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(4): 1513-1524 (in Chinese). | |
| [8] | 张广田, 张艳佳, 贺光炜. 固废基胶凝材料水化特性及其掺量对C30混凝土力学性能影响研究[J]. 建筑结构, 2024, 54(23): 133-137+26. |
| ZHANG G T, ZHANG Y J, HE G W. Study on hydration characteristics of solid waste based cementitious materials and effect of its content on mechanical properties of C30 concrete[J]. Building Structure, 2024, 54(23): 133-137+26 (in Chinese). | |
| [9] | 秦 玲, 杨俊翼, 孙建伟, 等. 碱激发煤矸石-矿渣胶凝材料的制备及性能研究[J/OL]. 复合材料学报, 2025: 1-17. ( 2025-06-10) [ 2025-11-18]. https://doi.org/10.13801/j.cnki.fhclxb.20250609.011. |
| QIN L, YANG J Y, SUN J W, et al. Preparation and properties investigation of alkali-activated coal gangue-slag cementitious materials[J/OL]. Acta Materiae Compositae Sinica, 2025: 1-17 ( 2025-06-10) [ 2025-11-18]. https://doi.org/10.13801/j.cnki.fhclxb.20250609.011 (in Chinese). | |
| [10] | 凌一峰, 孙彦兵, 高发亮, 等. 基于固化机理的固废基土壤固化剂研究进展[J]. 武汉科技大学学报, 2025, 48(2): 81-91. |
| LING Y F, SUN Y B, GAO F L, et al. Research progress in solid waste-based soil curing agents based on curing mechanisms[J]. Journal of Wuhan University of Science and Technology, 2025, 48(2): 81-91 (in Chinese). | |
| [11] |
WU Y L, YANG J J, CHANG R Q. The design of ternary all-solid-waste binder for solidified soil and the mechanical properties, mechanism and environmental benefits of CGF solidified soil[J]. Journal of Cleaner Production, 2023, 429: 139439.
DOI URL |
| [12] |
HAMED E, DEMIRÖZ A. Optimization of geotechnical characteristics of clayey soils using fly ash and granulated blast furnace slag-based geopolymer[J]. Construction and Building Materials, 2024, 441: 137488.
DOI URL |
| [13] | 吴 俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. |
| WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655 (in Chinese). | |
| [14] | 岳秀鹏, 陈忠平, 董永泉, 等. 赤泥改性激发制备轻质土及固碱性能研究[J]. 公路, 2025, 70(5): 347-353. |
| YUE X P, CHEN Z P, DONG Y Q, et al. Study on preparation of light soil by red mud modification and its alkali fixation performance[J]. Highway, 2025, 70(5): 347-353 (in Chinese). | |
| [15] | 吴伟军, 张鲲鹏, 张 宁, 等. 赤泥复合固化剂固化粉土路用性能及其机理[J]. 建筑材料学报, 2025, 28(3): 227-235. |
| WU W J, ZHANG K P, ZHANG N, et al. Road performance of red mud composite solidification agent for solidified silt and its mechanism[J]. Journal of Building Materials, 2025, 28(3): 227-235 (in Chinese). | |
| [16] | 李 璇, 李召峰, 张昊龙, 等. 固废基胶凝材料固化盾构渣土的作用机理及路用性能研究[J/OL]. 工程科学与技术, 2024: 1-15 ( 2024-12-30) [ 2025-11-18]. https://link.cnki.net/urlid/51.1773.tb.20241227.1111.001. |
| LI X, LI Z F, ZHANG H L, et al. Study on the mechanism and road performance of solid waste-based cementitious material for curing shield tunnel muck[J/OL]. Advanced Engineering Sciences, 2024: 1-15 ( 2024-12-30) [ 2025-11-18]. https://link.cnki.net/urlid/51.1773.tb.20241227.1111.001 (in Chinese). | |
| [17] | 李钰佳, 段思宇, 吴 浩, 等. 赤泥-粉煤灰-电石渣复合胶凝材料的力学性能及水化机理[J]. 硅酸盐通报, 2025, 44(3): 1041-1049. |
| LI Y J, DUAN S Y, WU H, et al. Mechanical properties and hydration mechanism of red mud-fly ash-calcium carbide slag composite cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(3): 1041-1049 (in Chinese). | |
| [18] | 杨晓蕴, 林 城. 不同工业固废协同水泥固化盐渍土无侧限抗压强度及机理研究[J]. 公路, 2024, 69(10): 53-62. |
| YANG X Y, LIN C. Research on unconfined compressive strength and mechanism of different industrial solid wastes cooperate with cement to stabilize saline soil[J]. Highway, 2024, 69(10): 53-62 (in Chinese). | |
| [19] | 陈瑞敏, 简文彬, 张小芳, 等. CSFG-FR协同作用改良淤泥固化土性能试验研究[J]. 岩土力学, 2022, 43(4): 1020-1030. |
| CHEN R M, JIAN W B, ZHANG X F, et al. Experimental study on performance of sludge stabilized by CSFG-FR synergy[J]. Rock and Soil Mechanics, 2022, 43(4): 1020-1030 (in Chinese). | |
| [20] | 李 胜, 张红日, 王桂尧, 等. 基于响应面法的碱激发地聚物固化淤泥质土试验研究[J]. 硅酸盐通报, 2023, 42(12): 4438-4448. |
| LI S, ZHANG H R, WANG G Y, et al. Experimental study of alkali-activated geopolymer cured silty soil based on response surface method[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4438-4448 (in Chinese). | |
| [21] | 尤 忆, 向 杰. 水泥稳定土强度和微观结构的冻融损伤规律[J]. 硅酸盐通报, 2020, 39(2): 453-458. |
| YOU Y, XIANG J. Freeze-thaw damage laws of strength and microstructure of cement stabilized soils[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 453-458 (in Chinese). | |
| [22] |
HORPIBULSUK S, RACHAN R, RAKSACHON Y. Role of fly ash on strength and microstructure development in blended cement stabilized silty clay[J]. Soils and Foundations, 2009, 49(1): 85-98.
DOI URL |
| [1] | LU Yiping, HUANG Xiulin, ZHOU Zichen, LIU Shiqi. Rheological and Mechanical Properties of Polybutyl Acrylate-Acrylic Acid/Water Glass Composite Modified Sludge [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 325-335. |
| [2] | HE Zhaoyi, ZOU Meng, YAO Qiwen, CAO Dongwei, QIN Meng. Performance and Strength Formation Mechanism of High Dosage Phosphogypsum-Cement-Curing Agent Stabilized Crushed Stone Base Layer Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2026, 45(1): 346-358. |
| [3] | HU Jianlin, LI Zhilin, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Mechanical Properties of Quicklime-Activated Ground Blast Furnace Slag-Fly Ash Geopolymer-Stabilized Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(8): 2912-2923. |
| [4] | HAO Mingsheng, QIN Qingjin, GAO Hui, QU Chunyu, QIN Yong,FANG Kuizhen, HAO Jianshuai. Effects of Water-Reducing Agents on Rheological Property and Strength of Magnesium Slag-Fly Ash-Based Flowable Solidified Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(7): 2710-2719. |
| [5] | ZHAO Yuchen, XING Ying, LI Wei, GUO Qi. Friction Performance of Steel-Concrete Composite Interface ThroughBolted Joints under Fatigue Loading [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2111-2120. |
| [6] | LI Jianhua, DENG Qiang, ZHAO Zhongjun, JIA Xiangyang, TANG Guowang, ZHOU Kai, FANG Kuizhen, YUAN Huikai. Influence of Low-Calcium Fly Ash Vitreous Content on Strength Development [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(6): 2201-2209. |
| [7] | QIU Mingming, YANG Meng, LI Xiaomin, LI Shengbin. Compressive Strength Characteristics and Its Influencing Factors of High Fill Loess Solidified by Cement [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1927-1938. |
| [8] | WEI Xianhua, WANG Delin, LI Chao, ZHONG Haijun, GUO Longlong. Effect of Fly Ash-Based Geopolymer and Water Content on Mechanical Properties of Solidified Soil [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(5): 1949-1956. |
| [9] | AN Ran, CAI Sutong, ZHANG Xianwei, GAO Haodong, YAO Miao, LIU Kui. Microscopic Cracks and Damage Model of Slag Stabilized Soil Based on Uniaxial Compression and CT Scanning [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1495-1503. |
| [10] | LIU Yanhao, LIU Lulu, LIU Tao, ZHANG Yan, YU Liucheng, ZHANG Dingfei, ZHAN Yuanzhe. Mechanical Properties and Microscopic Mechanisms of Yellow Floodplain Silt Solidified by Silica Fume-Ground Granulated Blast Furnace Slag-Carbide Slag Synergy [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1513-1524. |
| [11] | DU Junbiao, DU Yunxing, ZHOU Fen, LI Yanqiu, SHI Xionggang, XIONG Zheng. Strength and Durability of Industrial Waste Slag Composite Curing Sand Washing Sludge [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1525-1534. |
| [12] | WU Yankai, XU Meiling, YANG Chunmao, WANG Shixin, HAO Runmin, PENG Yanan. Physical and Mechanical Properties of Mucky Soil Modified by Composite Curing Agent under Seawater Erosion [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(4): 1535-1545. |
| [13] | TAN Yan, WANG Cheng, LONG Xiong, ZHOU Lijun, YAN Xi, YU Jiangtao. Property of Polyethylene Fiber Toughened High-Strength Gypsum [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 1011-1020. |
| [14] | SUN Jishu, LIU Lanbin, XUE Danxuan, CHEN Yonghao. Performance Impact of Construction Waste Recycled Materials Based on Multi Source Heterogeneity [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 1091-1101. |
| [15] | CHEN Jianhua, DAI Zili. Crack Evolution Characteristic and Strength Deterioration Mechanism of Bentonite-Fiber Improved Solidified Soil in Dry Environments [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2025, 44(3): 1170-1181. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||