[1] 全昭熹, 陈湘生, 陈 锋, 等. 基于生命周期评价方法的隧道施工渣土利用减碳效果分析[J]. 环境工程, 2023, 41(10): 91-98+162. QUAN Z X, CHEN X S, CHEN F, et al. Analysis of carbon reduction effect of tunnel construction muck soil utilization based on life cycle assessment[J]. Environmental Engineering, 2023, 41(10): 91-98+162 (in Chinese). [2] SUN X H, LIU W H, CHEN X S, et al. Sustainable solutions: transforming waste shield tunnelling soil into geopolymer-based underwater backfills[J]. Journal of Cleaner Production, 2024, 445: 141363. [3] ZHANG C, CHEN K, YANG J, et al. Reuse of discharged soil from slurry shield tunnel construction as synchronous grouting material[J]. Journal of Construction Engineering and Management, 2022, 148(2): 04021193. [4] ZHANG Y J, WANG J, ZHANG L L, et al. Study on the preparation and properties of high-belite cementitious materials from shield slag and calcium carbide slag[J]. Construction and Building Materials, 2022, 355: 129082. [5] TANNER S, KATRA I, ARGAMAN E, et al. Erodibility of waste (loess) soils from construction sites under water and wind erosional forces[J]. Science of the Total Environment, 2018, 616: 1524-1532. [6] 牛家栋, 杜运兴, 张自成, 等. 矿渣基地聚物流态盾构固化土的性能研究[J]. 硅酸盐通报, 2024, 43(6): 2176-2185. NIU J D, DU Y X, ZHANG Z C, et al. Performance of slag-based geopolymer flow shield-cured soil[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2176-2185 (in Chinese). [7] WU S L, LI X D, JIANG P M, et al. Dewatering characteristics of waste slurry from pipe jacking based on improved vacuum filtration method[J]. Tunnelling and Underground Space Technology, 2022, 130: 104727. [8] SUN Z Y, LI Y J, MING X, et al. Enhancing anti-washout behavior of cement paste by polyacrylamide gelation: from floc properties to mechanism[J]. Cement and Concrete Composites, 2023, 136: 104887. [9] 崔明娟, 郑俊杰, 章荣军, 等. 化学处理方式对微生物固化砂土强度影响研究[J]. 岩土力学, 2015, 36(增刊1): 392-396. CUI M J, ZHENG J J, ZHANG R J, et al. Study of effect of chemical treatment on strength of bio-cemented sand[J]. Rock and Soil Mechanics, 2015, 36(supplement 1): 392-396 (in Chinese). [10] 陈克政, 丁 琳. 碳酸盐渍土工程特性及固化技术研究进展[J]. 应用化工, 2024, 53(8): 1921-1924+1931. CHEN K Z, DING L. Research progress on engineering characteristics and solidification techniques of saline-alkali soils[J]. Applied Chemical Industry, 2024, 53(8): 1921-1924+1931 (in Chinese). [11] 王东星, 陈政光. 氯氧镁水泥固化淤泥力学特性及微观机制[J]. 岩土力学, 2021, 42(1): 77-85+92. WANG D X, CHEN Z G. Mechanical properties and micro-mechanisms of magnesium oxychloride cement solidified sludge[J]. Rock and Soil Mechanics, 2021, 42(1): 77-85+92 (in Chinese). [12] 陈 锐, 张 星, 朱 月. 钢渣水泥基地聚合物固化湿软黄土力学特性与微观机制[J]. 重庆交通大学学报(自然科学版), 2023, 42(6): 55-61. CHEN R, ZHANG X, ZHU Y. Steel slag and cement based geopolymer solidification of wet and soft loess: mechanical properties and micro mechanisms[J]. Journal of Chongqing Jiaotong University (Natural Science), 2023, 42(6): 55-61 (in Chinese). [13] 樊恒辉, 高建恩, 吴普特, 等. 水泥基土壤固化剂固化土的物理化学作用[J]. 岩土力学, 2010, 31(12): 3741-3745. FAN H H, GAO J E, WU P T, et al. Physicochemical actions of stabilized soil with cement-based soil stabilizer[J]. Rock and Soil Mechanics, 2010, 31(12): 3741-3745 (in Chinese). [14] 崔宏环, 朱超杰, 杨尚礼, 等. 干湿循环作用下改良粉质粘土的路用性能[J]. 华南理工大学学报(自然科学版), 2022, 50(2): 42-49. CUI H H, ZHU C J, YANG S L, et al. Road performance of improved silty clay under the action of drying-wetting cycles[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(2): 42-49 (in Chinese). [15] 王 鑫, 李玉华, 何立环, 等. 中国水泥行业2011—2022年二氧化碳和大气污染物排放分析[J]. 中国环境监测, 2024, 40(2): 8-18. WANG X, LI Y H, HE L H, et al. Analysis on the emissions of carbon dioxide and air pollutants in China’s cement industry from 2011 to 2022[J]. Environmental Monitoring in China, 2024, 40(2): 8-18 (in Chinese). [16] REN B, ZHAO Y L, BAI H Y, et al. Eco-friendly geopolymer prepared from solid wastes: a critical review[J]. Chemosphere, 2021, 267: 128900. [17] 俞家人, 陈永辉, 陈 庚, 等. 地聚物固化软黏土的力学特征及机理分析[J]. 建筑材料学报, 2020, 23(2): 364-371. YU J R, CHEN Y H, CHEN G, et al. Mechanical behaviour of geopolymer stabilized clay and its mechanism[J]. Journal of Building Materials, 2020, 23(2): 364-371 (in Chinese). [18] ZHANG M, GUO H, EL-KORCHI T, et al. Experimental feasibility study of geopolymer as the next-generation soil stabilizer[J]. Construction and Building Materials, 2013, 47: 1468-1478. [19] 吴 俊, 征西遥, 杨爱武, 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究[J]. 岩土力学, 2021, 42(3): 647-655. WU J, ZHENG X Y, YANG A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer[J]. Rock and Soil Mechanics, 2021, 42(3): 647-655 (in Chinese). [20] 杨振甲, 何 猛, 吴 杨, 等. 矿渣-粉煤灰地聚物固化淤泥力学性能和路用性能研究[J]. 硅酸盐通报, 2022, 41(2): 693-703+724. YANG Z J, HE M, WU Y, et al. Mechanical properties and road performance of slag-fly ash geopolymer stabilized sludge[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 693-703+724 (in Chinese). [21] 陈 林, 李 彬, 陈胜邦, 等. 碱激发矿渣加固淤泥的物理力学性能与机理[J]. 科学技术与工程, 2024, 24(2): 789-796. CHEN L, LI B, CHEN S B, et al. Properties and mechanism of solidified silty sediment from alkali-activated slag[J]. Science Technology and Engineering, 2024, 24(2): 789-796 (in Chinese). [22] 许 福, 蒋川梓, 张书经, 等. 碱激发矿渣固化土压平衡盾构渣土的试验研究[J]. 地下空间与工程学报, 2022, 18(3): 849-859. XU F, JIANG C Z, ZHANG S J, et al. Experimental study on alkali activated slag solidification of earth pressure balance shield muck[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(3): 849-859 (in Chinese). [23] 刘光焰, 樊 磊, 金大智, 等. 玻璃粉的活性激发技术及机理研究进展[J]. 科学技术与工程, 2016, 16(26): 152-157+194. LIU G Y, FAN L, JIN D Z, et al. Progress in stimulating techniques and mechanism of activity of glass powder[J]. Science Technology and Engineering, 2016, 16(26): 152-157+194 (in Chinese). [24] 彭丽娟, 柯国军, 宋百姓, 等. 废玻璃粉-偏高岭土地质聚合物胶砂的流动度和力学性能[J]. 硅酸盐通报, 2024, 43(6): 2168-2175. PENG L J, KE G J, SONG B X, et al. Fluidity and mechanical properties of waste glass powder-metakaolin geopolymer mortar[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(6): 2168-2175 (in Chinese). [25] POURABBAS BILONDI M, TOUFIGH M M, TOUFIGH V. Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils[J]. Construction and Building Materials, 2018, 170: 302-313. [26] ALI MOHAMMADZADEH M, TOUFIGH M M, TOUFIGH V. Durability and strength of geopolymer with recycled glass powder base for clay stabilization[J]. KSCE Journal of Civil Engineering, 2023, 27(1): 156-168. [27] OLUFOWOBI J, OGUNDOJU A, MICHAEL B, et al. Clay soil stabilisation using powdered glass[J]. Journal of Engineering Science and Technology, 2014, 9(5): 541-558. [28] BILGEN G. Utilization of powdered glass as an additive in clayey soils[J]. Geotechnical and Geological Engineering, 2020, 38(3): 3163-3173. [29] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for geotechnical test methods: GB/T 50123—2019[S]. Beijing: China Plan Publishing House, 2019 (in Chinese). [30] 周万良, 詹炳根, 龙靖华. 基于单纯形重心设计法的掺合料混凝土配合比设计[J]. 建筑材料学报, 2014, 17(4): 666-671. ZHOU W L, ZHAN B G, LONG J H. Designing the mix proportion of concrete with admixture based on simplex-centroid experimental design[J]. Journal of Building Materials, 2014, 17(4): 666-671 (in Chinese). [31] ZHANG S Z, KEULEN A, ARBI K, et al. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system[J]. Cement and Concrete Research, 2017, 102: 29-40. [32] PULIGILLA S, MONDAL P. Role of slag in microstructural development and hardening of fly ash-slag geopolymer[J]. Cement and Concrete Research, 2013, 43: 70-80. |