[1] CORREAL J F, HERRÁN C A, CARRILLO J, et al. Performance of hybrid fiber-reinforced concrete for low-rise housing with thin walls[J]. Construction and Building Materials, 2018, 185: 519-529. [2] WANG L B, CUI G Y, ZHANG C P, et al. Failure characteristics and seismic behavior of steel basalt hybrid fiber reinforced concrete lining for the tunnel in strong earthquake areas[J]. Engineering Failure Analysis, 2024, 162: 108357. [3] KHAN M, CAO M L, CHU S H, et al. Properties of hybrid steel-basalt fiber reinforced concrete exposed to different surrounding conditions[J]. Construction and Building Materials, 2022, 322: 126340. [4] ALWESABI E A H, ABU BAKAR B H, ALSHAIKH I M H, et al. An experimental study of compressive toughness of steel-polypropylene hybrid fibre-reinforced concrete[J]. Structures, 2022, 37: 379-388. [5] 于跟社, 邓宗才, 王 珏. 多组合混杂纤维增强UHPC断裂特性试验研究[J]. 北京工业大学学报, 2023, 49(5): 547-557. YU G S, DENG Z C, WANG J. Experimental study on fracture characteristics of UHPC reinforced by multiple hybrid fibers[J]. Journal of Beijing University of Technology, 2023, 49(5): 547-557 (in Chinese). [6] DING Y N, ZHANG F S, TORGAL F, et al. Shear behaviour of steel fibre reinforced self-consolidating concrete beams based on the modified compression field theory[J]. Composite Structures, 2012, 94(8): 2440-2449. [7] ABDALLAH S, FAN M Z, ZHOU X M, et al. Anchorage effects of various steel fibre architectures for concrete reinforcement[J]. International Journal of Concrete Structures and Materials, 2016, 10(3): 325-335. [8] KWAN A K H, CHU S H. Direct tension behaviour of steel fibre reinforced concrete measured by a new test method[J]. Engineering Structures, 2018, 176: 324-336. [9] KWAN A K H, NG I Y T. Adding steel fibres to improve shock vibration resistance of concrete[J]. Magazine of Concrete Research, 2007, 59(8): 587-597. [10] YANG D P, ZHANG B, LIU G J. Experimental study on spall resistance of steel-fiber reinforced concrete slab subjected to explosion[J]. International Journal of Concrete Structures and Materials, 2021, 15(1): 23. [11] REITERMAN P, HOLČAPEK O, JOGL M, et al. Physical and mechanical properties of composites made with aluminous cement and basalt fibers developed for high temperature application[J]. Advances in Materials Science and Engineering, 2015, 2015: 703029. [12] XU J P, WANG J, ZHENG C F, Study on reinforcement mechanism and microscopic morphology of steel-basalt mixed fiber HPCC[J]. Construction and Building Materials, 2020, 256, 119480. [13] CAO K, LIU G G, LI H, et al. Mechanical properties and microstructures of Steel-basalt hybrid fibers reinforced cement-based composites exposed to high temperatures[J]. Construction and Building Materials, 2022, 341: 127730. [14] KHAN M, LAO J C, AHMAD M R, et al. Influence of high temperatures on the mechanical and microstructural properties of hybrid steel-basalt fibers based ultra-high-performance concrete (UHPC)[J]. Construction and Building Materials, 2024, 411: 134387. [15] CAO K, LIU G G, LI H, et al. Correlation between macroscopic properties and microscopic pore structure in steel-basalt hybrid fibers reinforced cementitious composites subjected to elevated temperatures[J]. Construction and Building Materials, 2023, 365: 129988. [16] KHAN M, CAO M L, XIE C P, et al. Effectiveness of hybrid steel-basalt fiber reinforced concrete under compression[J]. Case Studies in Construction Materials, 2022, 16: e00941. [17] AFZAL M T, KHUSHNOOD R A, AHMED W. An experimental investigation on assessment of residual mechanical performance of basalt fiber reinforced high strength concrete at elevated temperature[J]. Fire Technology, 2022, 58(5): 3067-3090. [18] AN H M, SONG Y S, LIU L, et al. Experimental study of the compressive strengths of basalt fiber-reinforced concrete after various high-temperature treatments and cooling in open air and water[J]. Applied Sciences, 2021, 11(18): 8729. [19] JOSEPH L, MADHAVAN M K, JAYANARAYANAN K, et al. High temperature performance of concrete confinement by MWCNT modified epoxy based fiber reinforced composites[J]. Materials, 2022, 15(24): 9051. [20] 宫凤强. 动静组合加载下岩石力学特性和动态强度准则的试验研究[D]. 长沙: 中南大学, 2010. GONG F Q. Experimental study on mechanical properties and dynamic strength criterion of rock under combined static and dynamic loading[D]. Changsha: Central South University, 2010 (in Chinese). [21] 石高扬, 王志亮, 石 恒. C75混凝土动态劈裂行为试验与数值模拟分析[J]. 哈尔滨工业大学学报, 2019, 51(2): 109-116. SHI G Y, WANG Z L, SHI H. Experimental and numerical analysis of dynamic splitting behavior of C75 concrete[J]. Journal of Harbin Institute of Technology, 2019, 51(2): 109-116 (in Chinese). [22] 杨荣周, 徐 颖, 陈佩圆, 等. SHPB劈裂试验下橡胶水泥砂浆的动态力学、能量特性及破坏机理试验研究[J]. 材料导报, 2021, 35(10): 10062-10072. YANG R Z, XU Y, CHEN P Y, et al. Experimental study on dynamic mechanics, energy characteristics, and failure mechanism of rubber cement mortar under SHPB splitting test[J]. Materials Reports, 2021, 35(10): 10062-10072 (in Chinese). [23] WANG Q Z, LI W, XIE H P. Dynamic split tensile test of flattened Brazilian disc of rock with SHPB setup[J]. Mechanics of Materials, 2009, 41(3): 252-260. [24] 胡 俊, 丁克伟, 韦 璐. EPS混凝土静态压缩和劈裂性能[J]. 建筑材料学报, 2015, 18(5): 737-741. HU J, DING K W, WEI L. Compressive and splitting behavior of EPS concrete under static loading[J]. Journal of Building Materials, 2015, 18(5): 737-741 (in Chinese). [25] 王启智, 贾学明. 用平台巴西圆盘试样确定脆性岩石的弹性模量、拉伸强度和断裂韧度——第一部分: 解析和数值结果[J]. 岩石力学与工程学报, 2002, 21(9): 1285-1289. WANG Q Z, JIA X M. Determination of elastic modulus, tensile strength and fracture toughness of brittle rocks by using flattened Brazilian disk specimen: part I. analytical and numerical results[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9): 1285-1289 (in Chinese). [26] 王启智, 吴礼舟. 用平台巴西圆盘试样确定脆性岩石的弹性模量、拉伸强度和断裂韧度——第二部分: 试验结果[J]. 岩石力学与工程学报, 2004, 23(2): 199-204. WANG Q Z, WU L Z. Determination of elastic modulus, tensile strength and fracture toughness of britle rocks by using flattened Brazilian disk specimen: part II. experimental results[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 199-204 (in Chinese). [27] 王启智, 戴 峰, 贾学明. 对“平台圆盘劈裂的理论和试验” 一文的回复[J]. 岩石力学与工程学报, 2004, 23(1): 175-178. WANG Q Z, DAI F, JIA X M. Reply to the paper‘split test of flattened rock disc and related theory'[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1): 175-178 (in Chinese). [28] SI B W, LI Z Q, YANG Y, et al. Dynamic indentation testing and characterization of metals based on the split Hopkinson pressure bar (SHPB) device[J]. Mechanics of Materials, 2023, 177: 104550. [29] YANG R, ZHANG J G, LIANG H Z, et al. Split Hopkinson pressure bar (SHPB) test and different modeling methods of aluminum honeycomb materials[J]. Strength of Materials, 2022, 54(1): 33-40. [30] 刘永旺. 高温后混杂纤维混凝土在荷载作用下的力学特性研究[D]. 昆明: 昆明理工大学, 2022. LIU Y W. Study on mechanical properties of hybrid fiber concrete under load after high temperature[D]. Kunming: Kunming University of Science and Technology, 2022 (in Chinese). [31] 罗小宝, 刘 真. 硅粉对混凝土高温后力学性能影响的试验研究[J]. 建筑结构, 2021, 51(9): 70-73+22. LUO X B, LIU Z. Experimental study on the effect of silica fume on mechanical properties of concrete after high temperature[J]. Building Structure, 2021, 51(9): 70-73+22 (in Chinese). [32] 徐泽辉. 高温后钢-玄武岩混杂纤维混凝土力学特性研究[D]. 昆明: 昆明理工大学, 2023. XU Z H. Study on mechanical properties of steel-Basalt hybrid fiber concrete after high temperature[D]. Kunming: Kunming University of Science and Technology, 2023 (in Chinese). |