BULLETIN OF THE CHINESE CERAMIC SOCIETY ›› 2024, Vol. 43 ›› Issue (7): 2372-2382.
Special Issue: 水泥混凝土
• Cement and Concrete • Previous Articles Next Articles
LI Xuefeng1,2
Received:
2023-11-13
Revised:
2024-01-23
Online:
2024-07-15
Published:
2024-07-24
CLC Number:
LI Xuefeng. Sulfate Resistance Performance of Cement-Based Materials Containing Limestone Powder at Low Temperature[J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2372-2382.
[1] 李 江, 杨辉琴, 何向国, 等. 新疆复杂侵蚀环境下长距离输水管道阴极保护技术实践与展望[J]. 中国农村水利水电, 2023(2): 148-153+159. LI J, YANG H Q, HE X G, et al. Practice and prospect of cathodic protection technology for long-distance water pipelines under complex erosion environment in Xinjiang[J]. China Rural Water and Hydropower, 2023(2): 148-153+159 (in Chinese). [2] 周 阳. 掺Ⅱ级粉煤灰混凝土在新疆盐碱地区抗硫酸盐侵蚀性能研究[D]. 乌鲁木齐: 新疆农业大学, 2010: 1-2. ZHOU Y. Study on capability of resisting sulfate corrode of Ⅱ fly ash concrete in Xinjiang saline soil area[D].Urumqi: Xinjiang Agricultural University, 2010: 1-2 (in Chinese). [3] 吴 萌, 张云升, 刘志勇, 等. 水泥基材料碳硫硅钙石型硫酸盐侵蚀的研究进展[J]. 硅酸盐学报, 2022, 50(8): 2270-2283. WU M, ZHANG Y S, LIU Z Y, et al. Research progress on thaumasite form of sulfate attack in cement-based materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2270-2283 (in Chinese). [4] CRAMMOND N. The occurrence of thaumasite in modern construction: a review[J]. Cement and Concrete Composites, 2002, 24(3/4): 393-402. [5] 胡明玉, 唐明述. 碳硫硅钙石型硫酸盐腐蚀研究综述[J]. 混凝土, 2004(6): 17-19. HU M Y, TANG M S. A summary of the research on thaumasite form of sulfate attack[J]. Concrete, 2004(6): 17-19 (in Chinese). [6] DAEIZADEH M J, EBRAHIMI K, MIRVALAD S. Field occurrence of thaumasite sulfate attack: prevention perspective[J]. Asian Journal of Civil Engineering, 2020, 21(7): 1183-1192. [7] 许崇帮, 王华牢. 含石膏泥灰岩地质特点及隧道工程影响分析[J]. 地下空间与工程学报, 2020, 16(1): 227-233. XU C B, WANG H L. Analysis on geological characteristics of gypsiferous marl strata in tunnel[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 227-233 (in Chinese). [8] THOMAS M D A, ROGERS C A, BLESZYNSKI R F. Occurrences of thaumasite in laboratory and field concrete[J]. Cement and Concrete Composites, 2003, 25(8): 1045-1050. [9] 王志娟, 郭川川, 宋远明, 等. 碳硫硅钙石和钙矾石的稳定性[J]. 硅酸盐学报, 2016, 44(2): 292-298. WANG Z J, GUO C C, SONG Y M, et al. Stability of thaumasite and ettringite[J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 292-298 (in Chinese). [10] TSIVILIS S, KAKALI G, SKAROPOULOU A, et al. Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar[J]. Cement and Concrete Composites, 2003, 25(8): 969-976. [11] NOBST P, STARK J. Investigations on the influence of cement type on thaumasite formation[J]. Cement and Concrete Composites, 2003, 25(8): 899-906. [12] MIRVALAD S, NOKKEN M. Minimum SCM requirements in mixtures containing limestone cement to control thaumasite sulfate attack[J]. Construction and Building Materials, 2015, 84: 19-29. [13] 吴 萌, 姬永生, 陈晓峰, 等. 超细粉煤灰对碳硫硅钙石型硫酸盐破坏的影响[J]. 浙江大学学报(工学版), 2016, 50(8): 1479-1485. WU M, JI Y S, CHEN X F, et al. Effects of superfine fly ash on thaumasite form of sulfate attack[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(8): 1479-1485 (in Chinese). [14] MULENGA D M, STARK J, NOBST P. Thaumasite formation in concrete and mortars containing fly ash[J]. Cement and Concrete Composites, 2003, 25(8): 907-912. [15] JIANG D B, LI X G, JIANG W G, et al. Effect of tricalcium aluminate and sodium aluminate on thaumasite formation in cement paste[J]. Construction and Building Materials, 2020, 259: 119842. [16] KE K, WANG Y B. Effect of aluminum phase in the formation process of thaumasite[J]. Materials Research Innovations, 2019, 23(6): 369-374. [17] WANG Y B, HE X Y, SU Y, et al. Effect of aluminium phases on thaumasite formation in cement slurries containing limestone powder[J]. Magazine of Concrete Research, 2018, 70(12): 610-616. [18] 王 冲, 刘焕芹, 罗遥凌, 等. 电脉冲用于混凝土抗硫酸盐侵蚀加速试验方法[J]. 同济大学学报(自然科学版), 2013, 41(12): 1865-1871. WANG C, LIU H Q, LUO Y L, et al. Accelerated test method of sulfate attack resistance of concrete based on electrical pulse[J]. Journal of Tongji University (Natural Science), 2013, 41(12): 1865-1871 (in Chinese). [19] 方 正, 王 冲, 罗遥凌. 电脉冲对加速水泥基材料碳硫硅钙石型硫酸盐侵蚀的影响[J]. 硅酸盐学报, 2018, 46(8): 1095-1102. FANG Z, WANG C, LUO Y L. Effect of electrical pulse on accelerated thaumasite sulfate attack in cement-based materials[J]. Journal of the Chinese Ceramic Society, 2018, 46(8): 1095-1102 (in Chinese). [20] 黄 谦, 王 冲, 周 莹, 等. 电脉冲下矿物掺合料对砂浆硫酸盐侵蚀的影响[J]. 湖南大学学报(自然科学版), 2016, 43(12): 62-70. HUANG Q, WANG C, ZHOU Y, et al. Effect of mineral admixtures on sulfate attack for mortars subj ected to electrical pulse[J]. Journal of Hunan University (Natural Sciences), 2016, 43(12): 62-70 (in Chinese). [21] 国家能源局. 抗硫酸盐侵蚀混凝土应用技术规程: DL/T 5801—2019[S]. 北京: 中国电力出版社, 2019. National Energy Administration. Technical specification for application of sulfate-resistant concrete: DL/T 5801—2019[S]. Beijing: China Electric Power Publishing House, 2019 (in Chinese). [22] ZENG Q P, WANG C, LUO Y L, et al. Effect of temperatures on TSA in cement mortars under electrical field[J]. Construction and Building Materials, 2018, 162: 88-95. [23] 郭川川, 宋远明, 赵 洋, 等. 碳硫硅钙石鉴别方法研究[J]. 硅酸盐通报, 2015, 34(6): 1498-1503. GUO C C, SONG Y M, ZHAO Y, et al. Identification methods of thaumasite[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(6): 1498-1503 (in Chinese). [24] 马保国, 高小建, 罗忠涛. 矿物掺合料对水泥砂浆TSA侵蚀的影响[J]. 材料科学与工程学报, 2006, 24(2): 230-234. MA B G, GAO X J, LUO Z T. Effects of mineral admixtures on thaumasite form of sulfate attack of cement mortars[J]. Journal of Materials Science and Engineering, 2006, 24(2): 230-234 (in Chinese). [25] LIU S H, YAN P Y, FENG J W. Effect of limestone powder and fly ash on magnesium sulfate resistance of mortar[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2010, 25(4): 700-703. [26] 李 华, 孙 伟, 左晓宝. 矿物掺合料改善水泥基材料抗硫酸盐侵蚀性能的微观分析[J]. 硅酸盐学报, 2012, 40(8): 1119-1126. LI H, SUN W, ZUO X B. Effect of mineral admixtures on sulfate attack resistance of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2012, 40(8): 1119-1126 (in Chinese). [27] 宫经伟, 谢刚川, 贾洪全, 等. 矿渣粉与粉煤灰改善水泥基材料抗硫酸盐侵蚀性能差异研究[J]. 水力发电, 2021, 47(8): 130-135. GONG J W, XIE G C, JIA H Q, et al. Study on the difference between slag powder and fly ash in improving the sulfate resistance of cement-based materials[J]. Water Power, 2021, 47(8): 130-135 (in Chinese). [28] BELLMANN F, ERFURT W, LUDWIG H M. Field performance of concrete exposed to sulphate and low pH conditions from natural and industrial sources[J]. Cement and Concrete Composites, 2012, 34(1): 86-93. [29] CILIBERTO E, IOPPOLO S, MANUELLA F. Ettringite and thaumasite: a chemical route for their removal from cementious artefacts[J]. Journal of Cultural Heritage, 2008, 9(1): 30-37. [30] BARNETT S J, MACPHEE D E, LACHOWSKI E E, et al. XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite[J]. Cement and Concrete Research, 2002, 32(5): 719-730. [31] ZHOU Q, HILL J, BYARS E A, et al. The role of pH in thaumasite sulfate attack[J]. Cement and Concrete Research, 2006, 36(1): 160-170. [32] JALLAD K N, SANTHANAM M, COHEN M D. Stability and reactivity of thaumasite at different pH levels[J]. Cement and Concrete Research, 2003, 33(3): 433-437. [33] MIRVALAD S, NOKKEN M. Studying thaumasite sulfate attack using compressive strength and ultrasonic pulse velocity[J]. Materials and Structures, 2016, 49(10): 4131-4146. [34] RAHMAN M M, BASSUONI M T. Thaumasite sulfate attack on concrete: mechanisms, influential factors and mitigation[J]. Construction and Building Materials, 2014, 73: 652-662. [35] SKAROPOULOU A, TSIVILIS S, KAKALI G, et al. Thaumasite form of sulfate attack in limestone cement mortars: a study on long term efficiency of mineral admixtures[J]. Construction and Building Materials, 2009, 23(6): 2338-2345. [36] HIGGINS D D, CRAMMOND N J. Resistance of concrete containing ggbs to the thaumasite form of sulfate attack[J]. Cement and Concrete Composites, 2003, 25(8): 921-929. [37] HOSSACK A M, THOMAS M D A. Varying fly ash and slag contents in Portland limestone cement mortars exposed to external sulfates[J]. Construction and Building Materials, 2015, 78: 333-341. [38] RAMEZANIANPOUR A M. Sulfate resistance and properties of portland-limestone cements[M]. Canada: University of Toronto, 2012. [39] 付浩兵. 水泥基材料抗TSA侵蚀性能及机理的研究[D]. 武汉: 武汉理工大学, 2014. FU H B. Study on TSA corrosion resistance and mechanism of cement-based materials[D].Wuhan: Wuhan University of Technology, 2014 (in Chinese). [40] 班克成. 外加剂对混凝土TSA腐蚀的抑制作用[D]. 重庆: 重庆大学, 2010: 55-56. BAN K C. Inhibitory effect of additives on TSA corrosion of concrete[D].Chongqing: Chongqing University, 2010: 55-56 (in Chinese). [41] 李长成, 徐振然, 陈同德. 粉煤灰对碳硫硅钙石型硫酸盐侵蚀的影响[J]. 建筑材料学报, 2014, 17(4): 685-689. LI C C, XU Z R, CHEN T D. Effects of fly ash on thaumasite form of sulfate attack[J]. Journal of Building Materials, 2014, 17(4): 685-689 (in Chinese). [42] 张 靖, 叶建雄, 杨长辉, 等. 粉煤灰对水泥石抗碳硫硅钙石型硫酸盐腐蚀性能的影响[J]. 新型建筑材料, 2010, 37(4): 16-20. ZHANG J, YE J X, YANG C H, et al. Effect of fly ash on thaumasite form of sulfate attack of cement-based materials[J]. New Building Materials, 2010, 37(4): 16-20 (in Chinese). [43] 傅 博, 程臻赟, 何妍亭, 等. 矿渣对水泥石抗碳硫硅钙石型硫酸盐腐蚀性能的影响[J]. 硅酸盐通报, 2020, 39(2): 471-476. FU B, CHENG Z Y, HE Y T, et al. Effect of slag on thaumasite sulfate attack resistance of cement paste[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(2): 471-476 (in Chinese). [44] 周丽民. 矿粉对水泥基材料抗碳硫硅钙石侵蚀破坏的定量分析[J]. 粉煤灰综合利用, 2012, 25(3): 33-36. ZHOU L M. Quantitative analysis of the resistance to thaumasite attack of mineral powder on cement matrix[J]. Fly Ash Comprehensive Utilization, 2012, 25(3): 33-36 (in Chinese). |
[1] | LI Kang, GAO Meng, ZOU Min, LIU Juanhong, XIE Yongjiang. Influence of Carbonate Environment on Performance and Microscopic Characteristics of Tunnel Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(7): 2415-2426. |
[2] | LI Jianfeng. Evolution Rule of Dynamic Mechanical Properties of Cement-Based Materials Containing SAP [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(6): 2022-2030. |
[3] | ZHANG Zhaorui, LUO Surong, LIN Xin. Anisotropic of 3D Printed Cement-Based Materials Reinforced with Metakaolin and Limestone Powder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1651-1662. |
[4] | JING Biao, ZHANG Kaifeng, SANG Guochen, TONG Xiaogen, ZHU Wangke. Construction and Mix Ratio Optimization of Two Kinds of Ternary Gelling Systems [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(5): 1822-1831. |
[5] | WEI Zhiyang, WANG Xiaodong, SU Teng, CHEN Huanle, GAO Feng, MIAO Yang. Preparation and Dielectric Properties of CaO-B2O3-SiO2 Glass-Ceramics [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1274-1283. |
[6] | MA Ying, LI Yuwei, TAI An. Magnesium Sulfate Attack Resistance of Mortar with Coral Sand Powder [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(4): 1380-1387. |
[7] | LYU Yajun, SONG Caihong, DANG Juntao, DONG Binbin, QIAO Min, ZHANG Kangjie, MA Xiaofeng. Comparative Study on Performance of Two Water Resistant Long Afterglow Materials for Preparing Luminescent Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 781-792. |
[8] | GE Keyu, LONG Yong, CHEN Luyi, LI Xin, LIU Kaizhi, WANG Yu, SUN Tao. Effects of Mixing Mineral Admixtures on Properties of Ultra High Performance Wet-Joint Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(3): 948-955. |
[9] | NI Yongjun, LI Wenrong, SONG Weichang, ZHANG Shenghua, LI Jun, TIAN Qian, GUAN Bowen. Effect and Performance of Microbial Healing Technology on Mortar Through Injection Method at Low Temperature [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 478-486. |
[10] | XIANG Jie, WANG Sheng, LI Yujie, WANG Wenjie. Carbon Nanocomposite Cement-Based Materials for Geothermal Drilling and Production Based on Response Surface Method [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(2): 495-508. |
[11] | ZHU Pengfei, YU Yi, SHI Yanran, YANG Heng, HE Yang, XU Fei, JIANG Linhua, CHU Hongqiang, XU Tianlei, XU Ning. Pore Structure Evolution of Limestone Powder Hardened Cement Slurry Based on Electrochemical Impedance Spectroscopy [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2024, 43(1): 35-43. |
[12] | GUO Zheng, MU Song, ZHUANG Zhijie, ZHANG Hao, ZHANG Lei. Research Progress on Properties of Cement-Based Materials under Medium or High Vacuum Environment [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3075-3082. |
[13] | SHAN Yalong, YANG Shengjie, HE Gongrui, SUI Shiyu, LI Shaochun, GENG Yongjuan. Influence Mechanism of Limestone Powder on Chloride Ions Transport of Cement-Based Material [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(9): 3089-3099. |
[14] | SHI Xinchao, FANG Jingrui, ZHI Xiao, CHEN Ge, MA Tengkun, ZHANG Shuai, QU Qiqi. Effects of Pore Structure and Water Content on Carbonation Curing Performance of Cement Paste [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2692-2702. |
[15] | WU Yechen, LYU Henglin, ZHANG Mingming, YAN Qiyao, YAN Hui, QI Chuankang. Freeze-Thaw Resistance of Composite Limestone Powder-Fly Ash-Slag Concrete [J]. BULLETIN OF THE CHINESE CERAMIC SOCIETY, 2023, 42(8): 2808-2820. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||