[1] 田 青, 屈孟娇, 祁 帅, 等. 低强型水泥乳化沥青砂浆抗压强度的计算模型[J]. 材料导报, 2022, 36(22): 248-252. TIAN Q, QU M J, QI S, et al. Calculation model for compressive strength of low strength cement asphalt mortar[J]. Materials Reports, 2022, 36(22): 248-252 (in Chinese). [2] 徐 浩, 周双喜, 张浩东, 等. 高速铁路板式无砟轨道水泥乳化沥青砂浆粘弹性研究进展[J/OL]. 材料导报, 1-20 (2023-11-13)[2023-12-01]. http://kns.cnki.net/kcms/detail/50.1078.TB.20231110.0936.002.html. XU H, ZHOU S X, ZHANG H D, et al. Research progress of CA mortar viscoelasticity for slab ballastless track of high-speed railway[J/OL]. Materials Reports, 1-20 (2023-11-13)[2023-12-01]. http://kns.cnki.net/kcms/detail/50.1078.TB.20231110.0936.002.html (in Chinese). [3] 孔祥明, 张艳荣, 张敬义, 等. 新拌水泥沥青浆体的流动性及显微结构研究[J]. 建筑材料学报, 2011, 14(4): 569-575. KONG X M, ZHANG Y R, ZHANG J Y, et al. Investigation on flowability and microstructure of fresh cement asphalt binder[J]. Journal of Building Materials, 2011, 14(4): 569-575 (in Chinese). [4] 李 炜, 朱文婷, 施宇磊, 等. 阳离子乳化沥青对水泥水化及CA砂浆性能的影响[J]. 混凝土与水泥制品, 2020(12): 1-5. LI W, ZHU W T, SHI Y L, et al. The influence of cationic asphalt emulsion on cement hydration and properties of CA mortar[J]. China Concrete and Cement Products, 2020(12): 1-5 (in Chinese). [5] 魏唐中, 洪锦祥, 林俊涛. 水泥与乳化沥青对冷再生强度的影响及作用机理[J]. 建筑材料学报, 2017, 20(2): 310-315. WEI T Z, HONG J X, LIN J T. Effect and action mechanism of cement and emulsified asphalt on the strength of cold regeneration[J]. Journal of Building Materials, 2017, 20(2): 310-315 (in Chinese). [6] 徐国成. 复合冷再生材料界面形态特征及混合料强度研究[D]. 重庆: 重庆交通大学, 2021. XU G C. Research on the interface morphology characteristics of composite cold recycled materials and the strength of the mixture[D]. Chongqing: Chongqing Jiaotong University, 2021 (in Chinese). [7] 李增志. 基于CT数据的砂岩孔隙结构参数的研究[D]. 黑龙江:东北石油大学, 2023 LI Z Z. Research on pore structure parameters of sandstone based on CT data[D]. Heilongjiang: Northeast Petroleum University, 2023 (in Chinese). [8] 张 铖, 王 玲, 姚 燕, 等. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 50-54. ZHANG C, WANG L, YAO Y, et al. On the relationship between pore structure and gas permeability from Autoclam test in carbonated concrete[J]. Materials Reports, 2023, 37(8): 50-54 (in Chinese). [9] 邓德华, 叶 涛, 元 强, 等. 水泥乳化沥青砂浆的孔结构及其测试方法对比[J]. 建筑材料学报, 2016, 19(5): 933-938. DENG D H, YE T, YUAN Q, et al. Pore structure of cement emulsified asphalt mortar and comparison of its test methods[J]. Journal of Building Materials, 2016, 19(5): 933-938 (in Chinese). [10] 杨 明, 柳 磊, 张学博, 等. 不同阶煤孔隙结构与流体特性的核磁共振试验研究[J]. 中国安全科学学报, 2021, 31(1): 81-88. YANG M, LIU L, ZHANG X B, et al. Nuclear magnetic resonance experimental study on pore structure and fluid characteristics of coal at different ranks[J]. China Safety Science Journal, 2021, 31(1): 81-88 (in Chinese). [11] 朱 逸, 杨日交, 彭 宇, 等. 水泥基材料界面过渡区的压汞法联合X射线断层扫描表征[J]. 硅酸盐学报, 2022, 50(8): 2136-2144. ZHU Y, YANG R J, PENG Y, et al. Characterization of ITZ in cement-based materials by mercury intrusion porosimetery and X-ray computed tomography[J]. Journal of the Chinese Ceramic Society, 2022, 50(8): 2136-2144 (in Chinese). [12] 铁道部科学技术司.客运专线铁路 CRTS I型板式无砟轨道水泥乳化沥青砂浆暂行技术条件[M].北京: 中国铁道出版社, 2008. Science and Technology Division of the Ministry of Railways. Provisional technical conditions for cement emulsified bituminous mortar for CRTS I type ballast-less track of passenger dedicated line railway[M]. Beijing: China Railway Publishing House, 2008 (in Chinese). [13] 王成平, 张佳生. 基于核磁共振技术的硫酸盐侵蚀下混凝土孔隙率发展规律分析[J]. 山东科学, 2022, 35(1): 65-72+98. WANG C P, ZHANG J S. Porosity development analysis of concrete under sulfate attack based on nuclear magnetic resonance[J]. Shandong Science, 2022, 35(1): 65-72+98 (in Chinese). |