[1] LI V C. Performance driven design of fiber reinforced cementitious composites[C]//Proceedings of 4th Rilem International Symposium on Fiber Reinforced Concrete, 1992, 12-30. [2] MA H, QIAN S Z, ZHANG Z G, et al. Tailoring engineered cementitious composites with local ingredients[J]. Construction and Building Materials, 2015, 101: 584-595. [3] DING Y, LIU J P, BAI Y L. Linkage of multi-scale performances of nano-CaCO3 modified ultra-high performance engineered cementitious composites (UHP-ECC)[J]. Construction and Building Materials, 2020, 234: 117418. [4] ZHOU Y W, ZHONG Q L, XING F, et al. Influence of cyclic loading on the tensile fracture characteristics of ultra-high performance engineered cementitious composites[J]. Construction and Building Materials, 2020, 240: 117937. [5] 李庆华, 徐世烺. 超高韧性水泥基复合材料基本性能和结构应用研究进展[J]. 工程力学, 2009, 26(增刊 2): 23-67. LI Q H, XU S L. Performance and application of ultra-high toughness cementitious composite: a review[J]. Engineering Mechanics, 2009, 26(supplement 2): 23-67 (in Chinese). [6] 徐世烺, 蔡向荣, 张英华. 超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析[J]. 土木工程学报, 2009, 42(11): 79-85. XU S L, CAI X R, ZHANG Y H. Experimental measurement and analysis of the axial compressive stress-strain curve of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2009, 42(11): 79-85 (in Chinese). [7] CAI X R, XU S L. Uniaxial compressive properties of ultra high toughness cementitious composite[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2011, 26(4): 762-769. [8] 李 艳, 程格格, 刘泽军. 聚乙烯醇纤维增强水泥基复合材料单轴受压强度与变形特性分析[J]. 工业建筑, 2017, 47(04): 122-126+158. LI Y, CHENG G G, LIU Z J. Analysis of strength and deformation properties on PVA-ECC under uniaxial compression[J]. Industrial Construction, 2017, 47(04): 122-126+158(in Chinese). [9] CHE J L, GUO Z W, LI Q W, et al. Mechanical properties of desert-sand-based steel-PVA hybrid fiber reinforced engineered cementitious composites (H-DSECC)[J]. KSCE Journal of Civil Engineering, 2022, 26(12): 5160-5172. [10] 王振波, 左建平, 张 君, 等. 混杂纤维延性水泥基材料单轴受压力学特性[J]. 建筑材料学报, 2018, 21(4): 639-644. WANG Z B, ZUO J P, ZHANG J, et al. Mechanical properties of hybrid fiber reinforced engineered cementitious composites under uniaxial compression[J]. Journal of Building Materials, 2018, 21(4): 639-644 (in Chinese). [11] SUN L Z, HAO Q, ZHAO J L, et al. Stress strain behavior of hybrid steel-PVA fiber reinforced cementitious composites under uniaxial compression[J]. Construction and Building Materials, 2018, 188: 349-360. [12] 邓明科, 韦 鼎, 张 伟, 等. 玄武岩纤维织物高延性混凝土拉伸性能[J]. 湖南大学学报(自然科学版), 2023, 50(9): 97-108. DENG M K, WEI D, ZHANG W, et al. Tensile mechanical properties of basalt textile reinforced highly ductile concrete[J]. Journal of Hunan University (Natural Sciences), 2023, 50(9): 97-108 (in Chinese). [13] 董志芳, 邓明科, 张 聪. 纤维织物增强高延性混凝土单轴拉伸性能试验研究[J]. 土木工程学报, 2020, 53(10): 13-25. DONG Z F, DENG M K, ZHANG C. Experimental investigation on uniaxial tension behavior of textile-reinforced highly ductile concrete[J]. China Civil Engineering Journal, 2020, 53(10): 13-25 (in Chinese). [14] EL-MESSIRY M, EL-TARFAWY S, EL-DEEB R. Enhanced impact properties of cementitious composites reinforced with pultruded flax/polymeric matrix fabric[J]. Alexandria Engineering Journal, 2017, 56(3): 297-307. [15] 车佳玲, 郭紫薇, 张艺馨等. 沙漠砂制备工程水泥基复合材料单轴拉伸性能分析[J]. 建筑结构, 2022, 52(增刊1):1597-1603. CHE J L, GUO Z W, ZHANG Y X, et al. Uniaxial tensile properties of engineered cementitious composite prepared from desert sand[J]. Building Structure, 2022, 52(supplement 1): 1597-1603 (in Chinese). [16] ASTMC39. Standard test method for compressive strength of cylindrical concrete specimens[S]. ASTM: West Conshohocken, 2001. [17] BARHUM R, MECHTCHERINE V. Effect of short, dispersed glass and carbon fibres on the behaviour of textile-reinforced concrete under tensile loading[J]. Engineering Fracture Mechanics, 2012, 92: 56-71. [18] BARHUM R, MECHTCHERINE V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete[J]. Materials and Structures, 2013, 46(4): 557-572. [19] LI L H, LI B X, WANG Z W, et al. Effects of hybrid PVA-steel fibers on the mechanical performance of high-ductility cementitious composites[J]. Buildings, 2022, 12(11): 1934. [20] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2003: 14-19. GUO Z H, SHI X D. Principle and analysis of reinforced concrete[M]. Beijing: Tsinghua University Press, 2003: 14-19 (in Chinese). [21] 钟光淳,周 颖,肖 意.钢-聚乙烯醇混杂纤维混凝土单轴受力应力-应变曲线研究[J]. 工程力学, 2020, 37(增刊1): 111-120. ZHONG G C, ZHOU Y, XIAO Y. Stress-strain behavior of steel-polyvinyl alcohol hybrid fiber reinforced concrete under axial compression and tension[J]. Engineering Mechanics, 2020, 37(supplement 1): 111-120 (in Chinese). [22] FANELLA D A, NAAMAN A E. Stress-strain properties of fiber reinforced mortar in compression[J]. ACI Journal Proceedings, 1985, 82(4): 475-483. [23] HSU L S, HSU C T T. Complete stress-strain behaviour of high-strength concrete under compression[J]. Magazine of Concrete Research, 1994, 46(169): 301-312. [24] 严少华, 钱七虎, 孙 伟, 等. 钢纤维高强混凝土单轴压缩下应力应变关系[J]. 东南大学学报(自然科学版), 2001, 31(2): 77-80. YAN S H, QIAN Q H, SUN W, et al. Stress-strain relationship of high-strength steel fiber reinforced concrete in compression[J]. Journal of Southeast University (Natural Science Edition), 2001, 31(2): 77-80 (in Chinese). [25] NATARAJA M C, DHANG N, GUPTA A P. Stress-strain curves for steel-fiber reinforced concrete under compression[J]. Cement and Concrete Composites, 1999, 21(5/6): 383-390. [26] DENG M K, HAN J, LIU H B, et al. Analysis of compressive toughness and deformability of high ductile fiber reinforced concrete[J]. Advances in Materials Science and Engineering, 2015, 2015: 384902. [27] 过镇海. 混凝土的强度和变形-试验基础和本构关系[M]. 北京: 清华大学出版社, 1997: 36-37. GUO Z H. Strength and deformation of concrete-experimental basis and constitutive relation[M]. Beijing: Tsinghua University Press, 1997: 36-37 (in Chinese). [28] 温丛格. 工程纤维增强水泥基复合材料PVA-ECC力学性能研究[D]. 焦作: 河南理工大学, 2015. WEN C G. Study on mechanical properties of engineering fiber reinforced cement-based composite PVA-ECC[D].Jiaozuo: Henan Polytechnic University, 2015 (in Chinese). [29] 刘伟康. ECC受压和受拉性能及本构模型研究[D]. 郑州: 郑州大学, 2018. LIU W K. Study on compressive and tensile properties and constitutive model of ECC[D].Zhengzhou: Zhengzhou University, 2018 (in Chinese). [30] 李 可, 喻 鹏, 刘伟康等. 工程水泥基复合材料受压性能及应力-应变关系研究[J]. 工业建筑, 2020, 50(3): 172-177. LI K, YU P, LIU W K, et al. Research on mechanical properties and stress-strain relationship of ECC under compression[J]. Industrial Construction, 2020, 50(3): 172-177(in Chinese). [31] 李 艳, 刘泽军. 高韧性PVA-FRCC单轴受压力学性能及本构关系[J]. 建筑材料学报, 2014, 17(4): 606-612. LI Y, LIU Z J. Study on mechanical performance and constitutive equation of high toughness PVA-FRCC under uniaxial compression[J]. Journal of Building Materials, 2014, 17(4): 606-612 (in Chinese). [32] 邓明科, 潘姣姣, 秦 萌, 等. 高延性混凝土单轴受压本构模型研究[J]. 西安建筑科技大学学报(自然科学版), 2016, 48(6): 826-831. DENG M K, PAN J J, QIN M, et al. Research on the constitutive relation of high ductile fiber reinforced concrete under uniaxial compression[J]. Journal of Xi’an University of Architecture & Technology (Natural Science Edition), 2016, 48(6): 826-831 (in Chinese). [33] XU S L, WU P, ZHOU F, et al. A dynamic constitutive model of ultra high toughness cementitious composites[J]. Journal of Zhejiang University: Science A, 2020, 21(12): 939-960. |