[1] AN G S, HAN J S, HUR J U, et al. Synthesis of sub-micro sized high purity zirconium diboride powder through carbothermal and borothermal reduction method[J]. Ceramics International, 2017, 43(8): 5896-5900. [2] DAVOODI D, HASSANZADEH-TABRIZI S A, HOSSEIN EMAMI A, et al. A low temperature mechanochemical synthesis of nanostructured ZrC powder by a magnesiothermic reaction[J]. Ceramics International, 2015, 41(7): 8397-8401. [3] WANG L B, SI L L, ZHU Y C, et al. Solid-state reaction synthesis of ZrC from zirconium oxide at low temperature[J]. International Journal of Refractory Metals and Hard Materials, 2013, 38: 134-136. [4] PADHAN M, MARATHE U, BIJWE J. A comparative assessment of nano and microparticles of carbides for performance augmentation of UHMWPE in abrasive and erosive wear modes[J]. Wear, 2023, 514/515: 204568. [5] 成会朝, 范景莲, 钱 昭, 等. 微量ZrC对Mo-Ti-Zr合金显微组织与性能的影响[J]. 中国科技论文, 2013, 8(6): 521-524. CHENG H C, FAN J L, QIAN Z, et al. Effects of trace ZrC on properties and microstructure of Mo-Ti-Zr alloys[J]. China Sciencepaper, 2013, 8(6): 521-524 (in Chinese). [6] FENG L, LEE S, LEE H. Nano-sized zirconium carbide powder: synthesis and densification using a spark plasma sintering apparatus[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64: 98-105. [7] LI X Y, ZHANG X H, HAN J C, et al. A technique for ultrahigh temperature oxidation studies of ZrB2-SiC[J]. Materials Letters, 2008, 62(17/18): 2848-2850. [8] YASNÓ J P, GUNNEWIEK R F K, KIMINAMI R H G A. Microwave synthesis of ultra-high temperature ceramic ZrC nanopowders[J]. Advanced Powder Technology, 2019, 30(7): 1348-1355. [9] XIE J J, FU Z Y, WANG Y C, et al. Synthesis of nanosized zirconium carbide powders by a combinational method of sol-gel and pulse current heating[J]. Journal of the European Ceramic Society, 2014, 34(1): 13.e1-13.e7. [10] 白 晨, 王周福, 邓承继, 等. 熔盐中镁热还原合成碳化锆粉体[J]. 人工晶体学报, 2018, 47(3): 505-509. BAI C, WANG Z F, DENG C J, et al. Magnesium reduction synthesis of ZrC powders in molten salt[J]. Journal of Synthetic Crystals, 2018, 47(3): 505-509 (in Chinese). [11] CAO Y N, LI F L, ZHANG H J, et al. Low-temperature preparation of ZrC powders using a combined sol-gel and microwave carbothermal reduction method[J]. Journal of the Ceramic Society of Japan, 2016, 124(11): 1171-1174. [12] 曾 广, 杨 鑫, 苏哲安, 等. 碳源及反应温度对碳热还原法制备纳米ZrC形貌与物相的影响[J]. 粉末冶金材料科学与工程, 2018, 23(1): 17-24. ZENG G, YANG X, SU Z A, et al. Effects of carbon source and synthesized temperature on the morphology and phase composition of nano-sized ZrC powders prepared by carbothermal reduction method[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(1): 17-24 (in Chinese). [13] WANG J X, NI D W, DONG S M, et al. Synthesis of nanocrystallized zirconium carbide based on an aqueous solution-derived precursor[J]. RSC Advances, 2017, 7(37): 22722-22727. [14] YU L, FENG L, LEE H I, et al. Synthesis and densification of ultra-fine ZrC powders-effects of C/Zr ratio[J]. International Journal of Refractory Metals and Hard Materials, 2019, 81: 149-154. [15] 喇培清, 韩少博, 卢学峰, 等. 合成原料中Mg配比对燃烧合成制备的ZrB2粉体粒度与纯度的影响研究[J]. 粉末冶金技术, 2013, 31(1): 3-8+13. LA P Q, HAN S B, LU X F, et al. Study of the influence of different stoichometry of Mg in starting mixture on particle size and purity of ZrB2 powder prepared by combustion synthesis[J]. Powder Metallurgy Technology, 2013, 31(1): 3-8+13 (in Chinese). [16] 张廷安, 豆志河, 刘 燕, 等. 自蔓延冶金法制备金属硼化物超细粉体清洁生产技术[J]. 中国科技成果, 2015(21): 79-80. ZHANG T A, DOU Z H, LIU Y, et al. Cleaner production technology for preparing ultrafine metal boride powder by self-propagating metallurgy[J]. China Science and Technology Achievements, 2015(21): 79-80 (in Chinese). [17] 许 珂. 盐助燃烧合成规模化制备纳米碳化锆、硼化锆粉体及其作用机制[D]. 兰州: 兰州理工大学, 2021. XU K. Large scale preparation of nano zirconium carbide and zirconium boride powders by salt assisted combustion synthesis and their action mechanism[D]. Lanzhou: Lanzhou University of Technology, 2021 (in Chinese). [18] GOSSET D, DOLLÉ M, SIMEONE D, et al. Structural behaviour of nearly stoichiometric ZrC under ion irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2008, 266(12/13): 2801-2805. [19] DA A Y, LONG F, WANG J L, et al. Preparation of nano-sized zirconium carbide powders through a novel active dilution self-propagating high temperature synthesis method[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2015, 30(4): 729-734. [20] XU S, ZHAN F Q, ZHENG Y H, et al. Preparation, microstructure and nanomechanical properties of hydrogenated tetrahedral amorphous carbon films[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 1-6. [21] DONG Z J, ZHANG X, HUANG Q, et al. Synthesis and pyrolysis behavior of a soluble polymer precursor for ultra-fine zirconium carbide powders[J]. Ceramics International, 2015, 41(6): 7359-7365. [22] CHU A M, QIN M L, ZHANG L, et al. Carbothermal synthesis of ZrC powders using a combustion synthesis precursor[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 204-210. [23] KATEA S N, RIEKEHR L, WESTIN G. Synthesis of nano-phase ZrC by carbothermal reduction using a ZrO2-carbon nano-composite[J]. Journal of the European Ceramic Society, 2021, 41(1): 62-72. [24] KIM J H, SEO M. Influence of lattice strain on grain growth behavior of zirconium carbide[J]. Ceramics International, 2018, 44(14): 17204-17208. [25] 许 珂, 占发琦, 张 华, 等. 混合盐辅助燃烧合成纳米ZrC粉体及影响机制[J]. 功能材料, 2021, 52(10): 10177-10186+10220. XU K, ZHAN F Q, ZHANG H, et al. Effect of mixed salts on combustion synthesis of nano-ZrC powder[J]. Journal of Functional Materials, 2021, 52(10): 10177-10186+10220 (in Chinese). |